Design of state-dependent labels for ion channel voltage sensors

Jon Sack Yarov-Yarovoy sphere of influence University of California, Davis

Visualizing nature's transistors with tarantula toxins

Jon Sack Yarov-Yarovoy sphere of influence University of California, Davis

biologic electrical waveforms are diverse

transmembrane voltage is biology's electrical signal

 $\mathbf{O} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{O}$

Monday, October 7, 13

voltage sensors respond to membrane voltage

state dependent voltage sensor ligands can visualize voltage change

voltage sensors couple to effector domains

voltage sensors are beautiful

voltage sensors move

Jensen...Leffler et al. Science 2012

Chilobrachys guangxiensis eats birds

guangxitoxin modulates voltage-sensitive open probability

guangxitoxin modulates voltage sensor conformation

guangxitoxin is an allosteric modulator

labeled guangxitoxin peptide retains activity

fluorescent guangxitoxin binds voltage sensors

voltage sensor-GFP

fluorescent guangxitoxin binds voltage sensors

toxin-rhodamine

fluorescent guangxitoxin binds voltage sensors

voltage sensor-GFP toxin-rhodamine

60+ voltage sensor proteins have different neuronal distributions

fluorescent tarantula toxin is a voltage sensitive dye

voltage sensors change conformation

design goals with Rosetta

- 1) model toxin-voltage sensor binding interface
- 2) redesign interface for chemical genetics
- 3) alter affinity for + vs voltage sensor conformations

interface redesign for orthogonal binding

interface redesign for orthogonal binding

Design strategy

tarantula toxin-voltage sensor docks yield clusters

alanine scans permit empirical evaluation

one-bead-one-compound method enables synthetic "display"

one-bead-one-compound method enables synthetic "display"

10⁵ - 10⁷ peptides each on one resin bead

cell with voltage sensorscontrol cell

Tarantula toxin beads bind voltage sensor cell

toxin-sensor interaction is amenable to display library voltage screening

challenges with Rosetta

1) model toxin-voltage sensor binding interface

protein docking protocols membrane scoring function

2) redesign interface for chemical genetics

non-canonical amino acids

3) alter affinity for + vs – voltage sensor conformations

low-resolution conformational constraints

Sack and Yarov-Yarovoy Labs

Drew Tilley Phuong Tran Fan Yang Ken Eum Arman Sidhu Sebastian Fletcher-Taylor Rayan Kaakati Daniel Austin

Vladimir Yarov-Yarovoy

Bruce Cohen LBNL

funding from NIH, AHA, DOE