Computational design of smallmolecule sensors/actuators

Yao-ming Huang

Kortemme lab

RosettaCon 2013

Detecting and responding to signals are fundamental to living systems

Controlling metabolism

Adapting to the environment

Collective decision making

Mood and behavior

Design concept – Ligand induced dimerization

Reprogram the protein-protein interface

Design concept – Ligand induced dimerization

The first target – Farnesyl pyrophosphate, FPP

Engineered metabolic pathway for FPP production in *E. coli*

- 15-carbon farnesyl group with charged diphosphate a flexible ligand
- In vivo production by engineered metabolic pathway
- Limited production in μM range

Binding motif of FPP

12,13-difluorofarnesyl diphosphate $K_i \approx 0.8 \mu M$

Strategy – motif directed design in three steps

I. Define the binding site geometry

Aristolochene synthase (3BNX)

Dan Mandell

Strategy – motif directed design in three steps

Ankyrin repeat protein-Maltose binding protein (1SVX)

Strategy – motif directed design in three steps

Ι. Define the binding site geometry 11. Search for matches Single and bb ensemble designs in >1,000 protein interfaces III. Stabilize binding site & predict "tolerated" sequences

Dan Mandell

Design strategy – active site grafting

Ι. Define the binding site geometry Π. Search for matches in >1,000 protein interfaces III. Stabilize binding site & predict "tolerated" sequences Dan Mandell

Design strategy overview

Aristolochene synthase (3BNX)

II. Heterodimer candidate

Ankyrin protein-Maltose binding protein (1SVX)

III. Modeling backbone flexibility

IV. Redesigning sequences

Improved methods for more predictive design

New sequence tolerance protocol:

Coupling changes of sequences, backbone, side chains & ligands

"Computational redesign of enzyme substrate specificity using coupled side-chain backbone moves"

Noah Ollikainen

Designed sensors are confirmed by split DHFR growth assays

Designed sensors are confirmed by split DHFR growth assays

Ligand (+)

"Colony printing"

wtAR-wtMBP

negative control

FPP sensor

Initial screen: ~1% of surviving clones are sensitive to FPP production

- 27 initial hits confirmed
 - 7 from the library design
 - 20 from the *in vitro* evolved single design

Three out of four motif knockouts eliminate the sensor activity

Motif knockouts confirm design validity

- Three out of four designed motif residues are confirmed to be essential to the binding.
- Improvement of W103A suggests possible overpacking of the binding site and/or the ligand movement.
- Remaining interactions from WT scaffold seem to be required in the initial hit.

Initial sensor activity can be optimized

- Iterative saturation mutagenesis (ISM)
 - 11 positions are selected around the active site

Initial sensor activity can be optimized

- Iterative saturation mutagenesis (ISM)
 - 11 positions are selected around the active site

Initial sensor activity can be optimized

- Iterative saturation mutagenesis (ISM)
 - 11 positions are selected around the active site

Most mutations are essential for sensor activity

- Decreasing of melting temperature from 70°C to 40°C was observed for Ankyrin-repeat protein. (preliminary)
- WT reversion mutations were introduced to find unnecessary mutations.
- Mutations at conserved regions of AR were tested.

3rd generation sensor

WT reversion

WT reversion mutation

WT reversion mutation

Sensor activity is dependent on the sensor expression and FPP pathway

Mutations in the last enzyme in the pathway eliminate sensor activity

Target authenticity

Conclusion & outlook

- Novel, functional sensors responding to FPP in cells are created by computational design.
- Binding site & pathway knockout mutations are consistent with predicted binding model & FPP sensing.
- Need *in vitro* quantification and structures of the complex.
- Explore the design fitness to learn about design successes and limitations.
- Test optimized sensors with modular outputs in metabolic flux control.

Where to go next?

Poster:

"Engineering small-molecule biosensors through computer-aided remodeling of protein-protein interfaces"

2012 Gen9 G-prize: 500 synthesized genes up to 1000 bp

Acknowledgments

W.M. KECK FOUNDATION

Saturation mutagenesis speculations

position	WT	design	change	
74*	Н	F, I,L	G	overpacked? correlated with F70?
107	Н	-	P,N,L,I	was not designed
108*	L	А	R,P	?
111	К	W,Y	V,L	overpacked? buries polar groups?
347*	F	(R**)	A,G,S,F	was not designed