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Organophosphates (OPs) are Highly Toxic
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Molecular Target of OP Toxicity —
Acetylcholine Esterase (AChE)

Acetylcholine signaling at synapse | ACh Esterase STOPS signaling process ‘ OP’s inhibit ACh Esterase

pre-synaptic pre-synaptic pre-synaptic
neuron neuron
L ) ’ '-
POsSt-Synaplic neuron post-synaptic neuron post-synaptic neuron

or muscle cell or muscle cell or muscle cell
B Acetyicholine (ACh) W ACh W ACh
H ACh Receptor H ACh Receptor H ACh Receptor

A,. Signal transmission A- Signal transmission —L Signal transmission
J7\ AChEsterase ) .‘ - ACh Esterase
P Organophosphate pesticide (OP)




AChE -- an Essential Serine Hydrolase (SH) with
a Conserved Catalytic Triad-based Active Site

Catalytic Triad
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Serine Hydrolase
Family Tree
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> 200 enzymes, ~ 1% of proteome
Proteases, esterase, lipase etc



Electrophilic OPs are Potent Inhibitors of SHs by
Covalently Modifying the Serine Nucleophile
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Bioscavengers to Prevent OP Poisoning

Recombinant human butyrylcholinesterase (BChE) to sequester
highly toxic OPs
* 65kDa, large amounts required for stoichiometric inhibition.
* 350 mg of human BCHE per 1 mg of cyclosarin.
* Unwanted hydrolysis of endogenous esters, leading to
imbalance of these metabolites in blood.

De Novo Designs of proteins with activated serine nucleophiles as
a new panel of OP scavenger agents

* Smaller and diverse scaffolds

* Specific for individual OP scavenging and detection

* Controllable activity against endogenous substrates

Towards design of de novo serine hydrolases.



Active-Site Nucleophiles in Native Enzymes

Lys /Cys /Ser
Aldolase Cathespin Trypsin
_~Asp _~His _Tyr

ATPase phosphokinase Topoisomerase



Active-Site Nucleophiles in Previous
De Novo Designed Enzymes
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Challenges in Designhing a Serine Nucleophile
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* Serine hydroxyl has a pKa of ~13 (vs. 8.00 for Cys and 10.5 for Lys)

* Requires precise designed interactions within the catalytic triad to activate

* How to screen and pick designs with activated serine nucleophile???



Activity-based Protein Profiling (ABPP)
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Proteome Probe-labeled proteome

Gel-based ABPP MS-based ABPP “Click chemistry”
-based ABPP

Liu Y et al. Proc. Natl. Acad. Sci. USA. 2000; Jessani et al, Nature Method, 2005.



OP-based Activity-based Probes for SHs

O - Fluorophore -- detection (in-gel fluoresence)
- Biotin — western blotting, enrichment
- Alkyne — “click chemistry” to conjugate with azide-
functionalized fluorophore or biotin



Activity-Based Protein Profiling (ABPP)
of Serine Proteases
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Profiling Proteome-wide SH Activities

in Cancer
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Profiling SH Activities in Cancer
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Overall Workflow
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Theozyme & RosettaMatch & Design
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* Transition state of syn- or anti- attack of serine nucleophile in R or S isomers of OP
* Ensemble of Ligand conformers constructed by OpenEye’s Omega software.
* RosettaMatch includes the Ser-His-Asp/Glu triad and an backbone NH as oxyanion hole




Screen By ABPP using OP-probes
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OSH55 Identified as a Potential Hit

OSH55 design

OSH55 design vs xtal
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Optimizing OSH55 Triad by RosettaDesign

Designs Mutations on wild-type
OSH55 No mutations (wild-type)
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Three OSH55 Variants with Increased
OP Reactivity and Accurate Triad Design
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Improve OP Reactivity of OSH55.4 by
Yeast Surface Display
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Specific OP Adduction with $151 in the Triad
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Measurement of Rate of OP Labeling by
Fluorescence Polarization

Fluorescence
Polarization
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OSH55.4 1 Reacts with OP as FAST as
Native Serine Hydrolases
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Structural Characterization of OSH55.4 1
Complexed with OPs

OSH55.4_1 with FPyne OSH55.4_1 with DFP




Conclusion and Future Directions

De Novo Design of proteins with authentic catalytic triads

Xtal structures confirm very accurately designed interactions
Serine nucleophile in the catalytic triad is activated

The designed serine reacts with OP as fast as those in native SHs
The designed protein binds to a toxic OP agent -- DFP

ABPP can aid screening and testing functional protein designs
Towards designs of enzymes with hydrolytic activity

Towards designs of protein scavengers of toxic OP agents
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