

Computational design of catalytic triadbased organophosphate capture proteins

Chu Wang The Cravatt Laboratory The Scripps Research Institute, La Jolla RosettaCON 2013

In Collaboration with Dr. Sridharan Rajagopalan, Baker Lab, UW

Organophosphates (OPs) are Highly Toxic

Pesticides

Parathion

Paraoxon

Malathion

Nerve agents

Molecular Target of OP Toxicity – Acetylcholine Esterase (AChE)

AChE -- an Essential Serine Hydrolase (SH) with a Conserved Catalytic Triad-based Active Site

Serine Hydrolase

> 200 enzymes, ~ 1% of proteome Proteases, esterase, lipase etc

Electrophilic OPs are Potent Inhibitors of SHs by Covalently Modifying the Serine Nucleophile

disabled acetylcholinesterase

Bioscavengers to Prevent OP Poisoning

- Recombinant human butyrylcholinesterase (BChE) to sequester highly toxic OPs
 - 65kDa, large amounts required for stoichiometric inhibition.
 - 350 mg of human BCHE per 1 mg of cyclosarin.
 - Unwanted hydrolysis of endogenous esters, leading to imbalance of these metabolites in blood.
- *De Novo* Designs of proteins with activated serine nucleophiles as a new panel of OP scavenger agents
 - Smaller and diverse scaffolds
 - Specific for individual OP scavenging and detection
 - Controllable activity against endogenous substrates
- Towards design of *de novo* serine hydrolases.

Active-Site Nucleophiles in Native Enzymes

Active-Site Nucleophiles in Previous De Novo Designed Enzymes

RA series by Jiang et al. Science, 2008

Buried Lysine

ECH series by Richter et al. JACS, 2012

Cys-His Dyad

Challenges in Designing a Serine Nucleophile

- Serine hydroxyl has a pKa of ~13 (vs. 8.00 for Cys and 10.5 for Lys)
- Requires precise designed interactions within the catalytic triad to activate
- How to screen and pick designs with activated serine nucleophile???

Activity-based Protein Profiling (ABPP)

Liu Y et al. Proc. Natl. Acad. Sci. USA. 2000; Jessani et al, Nature Method, 2005.

OP-based Activity-based Probes for SHs

- Fluorophore -- detection (in-gel fluoresence)
- Biotin western blotting, enrichment
- Alkyne "click chemistry" to conjugate with azidefunctionalized fluorophore or biotin

Activity-Based Protein Profiling (ABPP) of Serine Proteases

Profiling Proteome-wide SH Activities in Cancer ¹² PNGaseF kDa 100 -APH* 75 -BCHE Angiotensinase C 50 -- PS-PL1 37 -Esterase D Complement 1s 25kDa Hydrolase uPA Cathepsin A 25 -

Secreted Proteomes of Cancer Cells

Profiling SH Activities in Cancer

Secreted Proteomes of Cancer Cells

Overall Workflow

Theozyme & RosettaMatch & Design

- Transition state of syn- or anti- attack of serine nucleophile in R or S isomers of OP
- Ensemble of Ligand conformers constructed by OpenEye's Omega software.
- RosettaMatch includes the Ser-His-Asp/Glu triad and an backbone NH as oxyanion hole

Screen By ABPP using OP-probes

Fluorescence

- 2mL of E.coli culture
- Lyse the pallet
- Prepare soluble lysate
- Label with FP-Rh for 1 hour
- Run SDS gel
- Scan fluorescence
- Stain with Coomassie blue
- Normalize fluorescence/abundance
- Fast screening (50 designs per day)

Coomassie Blue

OSH55 Identified as a Potential Hit

J.Blue

Ser and His knockouts abolish FP labeling

Optimizing OSH55 Triad by RosettaDesign

Three OSH55 Variants with Increased OP Reactivity and Accurate Triad Design

Improve OP Reactivity of OSH55.4 by Yeast Surface Display

Specific OP Adduction with S151 in the Triad

Measurement of Rate of OP Labeling by Fluorescence Polarization

OSH55.4 1 Reacts with OP as FAST as **Native Serine Hydrolases**

OSH55.4_1-WT

– 1.0 uM

📥 2.0 uM

🕂 5.0 uM

Structural Characterization of OSH55.4_1 Complexed with OPs

OSH55.4_1 with FPyne

OSH55.4_1 with DFP

Conclusion and Future Directions

- *De Novo* Design of proteins with authentic catalytic triads
- Xtal structures confirm very accurately designed interactions
- Serine nucleophile in the catalytic triad is activated
- The designed serine reacts with OP as fast as those in native SHs
- The designed protein binds to a toxic OP agent -- DFP
- ABPP can aid screening and testing functional protein designs
- Towards designs of enzymes with hydrolytic activity
- Towards designs of protein scavengers of toxic OP agents

Acknowledgement

- Prof. David Baker and Prof. Benjamin Cravatt
- Sridharan Rajagopalan, Kai Yu,-- UW
- Megan L. Matthews Scripps
- Crystallographers at NSGC, Columbia University
- Aleksandr Miklos EXCET Inc.
- Defense Threat Reduction Agency (D.B.) and National Caner Institute (B.F.C.) for funding
- Sir Henry Wellcome Fellowship (S.R.) and NIH/NIEHS K99/R00 Fellowship (C.W.)