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propose B-DNA
structure
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Ingemar Whatson and Crick
started propose B-DNA

working on it structure
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We can infer helical parameters from diffraction patteen.
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Intensity along the layer line:

@ is a continuous
function

@ reflects regularly
repeating molecules
on the helix
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Top view

Side view Layer lines

Randomly oriented fibrils in XY plane lower resolution!
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Fiber diffraction limitations:

Provides less information than X-Ray
Crystallography

Crystallographic methods don’t work for fiber
diffraction data

More than one model can explain experimental
data

Alignment of fibrils is difficult to obtain

There is no method to process data from
misaligned fibrils
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Major goals:

@ Combine fiber diffraction data with modeling

@ Develop a fully automated structure solution
method

@ Determine structures de nowvo

@ Obtain high-resolution structure for
misaligned fibrils

@ ...and potentially from single molecule X-FEL
experiment
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Total energy calculation:

Etotal = Estructure + weight & Eea:perimental

Estructure = ERosetta

Z(Icalc - Iexp)2

Eezperimental = ZIQ <=> Rfactor
exp

Intensity

Intensity on a layer line: Red - experimental, Blue - calculated:

40 000

20 000
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Intensity calculations:

= Z ’Gn,l‘Q

G, calculation - reciprocal space

Gn) = Z Z fidn (277 R) exp(i[—n¢; + (2nlz;/c)])

Z Z fifjIn(2mr; R)Jy (27075 R) cos(phase)
where phase = (¢ — ¢5) — 27l(z — 2j)/c

Computationally costly: for 46aa proteins and 27 layer lines
108 iterations...
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Intensity calculations :

G, calculation - real space:

Gn :/ Gn,i(R)Jn(2mr R) 27161
0
c 2w )
where g,,; = (c/27r)/ / p(r, ¢, 2)e" P22 56
0o Jo

Computationally less expensive but less accurate.
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Pros:
@ Accurate

@ Derivatives can be
calculated

Cons:

@ Computationally
expensive (scales
with atoms?)

@ Calculated in
reciprocal space

reciprocal space real space

Pros:

@ Weak dependence on
number of atoms

@ Calculated in
cartesian coordinates

Cons:
@ Less accurate

@ Derivatives cannot be
calculated
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Inputs

Helical symmetry
(from data)

Protein sequence Experimental layer lines
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Fold-And-Dock simulations:

Start from Fragment Full atom relax
extended chain insertion +
+ jump moves

rigid body moves

Real space scoring Reciprocal space scoring

Repeated with

higher weight on
‘|: data for best models
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Fold-And-Dock simulations:

Start from Fragment Full atom relax
extended chain insertion +
+ jump moves
rigid body m
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PDB: 4ifm

Phage: Pf1 PH75
Number of residues: 46 46
Helix units/turns: 71/13  27/5

Monomer:

Assembly:
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Rfactor
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RMSD

Blue - Fold-And-Dock, Green - Relax
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Assembly

RMSD: 0.7A RMSD: 0.8A, Rfactor: 0.11
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Assembly

RMSD: 1.6A | RMSD: 1.7A, Rfactor: 0.12
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Assembly

RMSD: 1.6A RMSD: 1.7A, Rfactor: 0.07
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Assembly

RMSD: 2.0A RMSD : 2.6A, Rfactor: 0.25
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PDB: lifp  1qgll  4ifm lhgv
Phage: Pf3  Pfl Pfl PH75
Number of residues: 44 46 46 46

Helix units/turns: 27/5 27/5 71/13 27/5

Monomers (cmp.): f 1} / 3”!

Rfactor: 0.11 0.12 0.07 0.25
RMSD (monomer): 0.7A 1.6A 16A 2.0A
RMSD (assembly): 0.8A 1.7A 17A  25A

It works!
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vall2008 vall2011

RMSD =1.6A RMSD =11.8A
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Each subunit consist of 162 amino acid residues.

"

Data guided docking of

N - All atom refinement
Homology models models into a helix

Real space scoring function Reciprocal space scoring
function
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for each layer_line 1
for each bessel order n
for each reciprocal R
for each atom_i
for each atom_j

... gives 108 iterations for 46aa and 27 layer lines and takes 2-3s
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NINTENDDI)S 1
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Time [s]

60 80 100 120 140 160

Number of residues

180

==Standard

==Trig. opt.
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for each layer_line 1
for each bessel order n

fifj - Jn(27RTy) - ], (27RY}) - cos (phase)

phase = (p; — ¢;) — 2nl(z; — z)/c
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for each layer_limne 1
for each bessel order n

fifj + cos (phase)} (27R7;) [~ 2nRr; Jr 4z (ZrRTy) + 1/1; Jria (20RT;)]
fifj *Jn@rR) - ] (27Rr;) [=msin(phase)]

fify Ja(uRT) < Jn (21:R73) - 21 /z;[—nsin(phase)]

phase = n(p; — ¢;) = 2nl(z; — z)/c
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=¢=Standard

=“@=Trig. opt
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@ Modeling based on R factor is prone to over-fitting.

@ Because of low redundancy of data we cannot directly use
crystallographic R free.

@ We can, however optimally choose points from processed

data set.
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@ Modeling based on R factor is prone to over-fitting.

@ Because of low redundancy of data we cannot directly use
crystallographic R free.

@ We can, however optimally choose points from processed

data set:

5 000
= L S S e o e,
] 0.05 0.1 0.15 0.2 . .

R[1/A]

Intensity
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@ Modeling based on R factor is prone to over-fitting.
@ Because of low redundancy of data we cannot directly use

crystallographic Rfree.

for each set_of_optimal_points

5 000
0 e T e e,
] 0.0 0.1 0.15 0.2 . .

R1/A]

Intensity

Rfree = average(R factor)
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Etotal = EstTucture + weight * Eexperimental

Triangles - native structure, Rectangles - relaxed native structure
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@ We have successfully developed fiber diffraction modules
for Rosetta

@ We can de novo solve structures directly from fiber
diffraction data!

@ Larger systems can be approached with GPU based
computing.

@ Our approach presents an alternative to state-of-the-art
programs: CLEARER and X-PLOR
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But fibrils are not always willing to align...
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A lot of data available a no method to interpret them at the
moment!
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Thank you for your attention!
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