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28.07.2013

1 / 53



Fiber
Diffraction
basics

FD data and
Rosetta

Benchmark

Performance

Rfree

Conclusions

Fiber diffraction origins

2 / 53



Fiber
Diffraction
basics

FD data and
Rosetta

Benchmark

Performance

Rfree

Conclusions

Fiber diffraction origins

3 / 53



Fiber
Diffraction
basics

FD data and
Rosetta

Benchmark

Performance

Rfree

Conclusions

Fiber diffraction origins

4 / 53



Fiber
Diffraction
basics

FD data and
Rosetta

Benchmark

Performance

Rfree

Conclusions

Fiber diffraction origins

5 / 53



Fiber
Diffraction
basics

FD data and
Rosetta

Benchmark

Performance

Rfree

Conclusions

Fiber Diffraction experiment setup
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Continuous helix
Layer lines arise from repeats along the fiber axis
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Discontinuous helix
Diffraction in vertical and horizontal directions

We can infer helical parameters from diffraction pattern.8 / 53
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Discontinuous helix
Intensity along the layer lines

Intensity along the layer line:

is a continuous

function

reflects regularly

repeating molecules

on the helix
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Real-life fiber diffraction experiment
Bundle of aligned fibrils
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Real-life fiber diffraction experiment
Bundle of aligned fibrils - top view

Randomly oriented fibrils in XY plane lower resolution!
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Real-life fiber diffraction experiment
Misaligned fibrils
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Fiber Diffraction provides 2D information

Xtallography (3D) Fiber Diff. (2D) SAXS (1D)
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Limitations

Fiber diffraction limitations:
Provides less information than X-Ray

Crystallography

Crystallographic methods don’t work for fiber

diffraction data

More than one model can explain experimental

data

Alignment of fibrils is difficult to obtain

There is no method to process data from

misaligned fibrils
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Motivation

Major goals:

Combine fiber diffraction data with modeling

Develop a fully automated structure solution

method

Determine structures de novo

Obtain high-resolution structure for

misaligned fibrils

...and potentially from single molecule X-FEL

experiment
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Rosetta with experimental restraints

Total energy calculation:

Etotal = Estructure + weight ∗ Eexperimental
Estructure = ERosetta

Eexperimental =

∑
(Icalc − Iexp)2∑

I2exp
<=> Rfactor

Intensity on a layer line: Red - experimental, Blue - calculated:
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Incorporating Fiber Diffraction data into Rosetta

Intensity calculations:

Il(R) =
∑
n

|Gn,l|2

Gn,l calculation - reciprocal space

Gn,l =
∑
n

∑
i

fiJn(2πriR) exp(i[−nφi + (2πlzi/c)])

Il(R) =
∑
n

∑
i,j

fifjJn(2πriR)Jn(2πrjR) cos(phase)

where phase = (φi − φj)− 2πl(zi − zj)/c

Computationally costly: for 46aa proteins and 27 layer lines
108 iterations...
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Incorporating Fiber Diffraction data into Rosetta

Intensity calculations :

Il(R) =
∑
n

|Gn,l|2

Gn,l calculation - real space:

Gn,l =

∫ ∞
0

gn,l(R)Jn(2πrR)2πrδr

where gn,l = (c/2π)

∫ c

0

∫ 2π

0
ρ(r, φ, z)ei(φ−2πlz/c)δφδz

Computationally less expensive but less accurate.
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Intensity calculation - methods comparison

reciprocal space

Pros:

Accurate

Derivatives can be

calculated

Cons:

Computationally

expensive (scales

with atoms2)

Calculated in

reciprocal space

real space

Pros:

Weak dependence on

number of atoms

Calculated in

cartesian coordinates

Cons:

Less accurate

Derivatives cannot be

calculated
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De novo modeling flowchart
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De novo modeling flowchart

Fold-And-Dock simulations:
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De novo modeling flowchart

Fold-And-Dock simulations:
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Test set
Inoviruses - bacteriophage viruses

PDB: 1ifp 1ql1 4ifm 1hgv
Phage: Pf3 Pf1 Pf1 PH75
Number of residues: 44 46 46 46
Helix units/turns: 27/5 27/5 71/13 27/5

Monomer:

Assembly:
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Rfactor vs. Rosetta score
PF3 filamentous bacteriophage (1ifp)
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Rfactor vs. RMSD(monomer)
PF3 filamentous bacteriophage (1ifp)

Blue - Fold-And-Dock, Green - Relax25 / 53
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Comparison of lowest Rfactor model with native
PF3 filamentous bacteriophage (1ifp)

Monomer

RMSD: 0.7Å

Assembly

RMSD: 0.8Å, Rfactor: 0.11
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Comparison of lowest Rfactor model with native
PF1 bacteriophage (1ql1)

Monomer

RMSD: 1.6Å

Assembly

RMSD: 1.7Å, Rfactor: 0.12
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Comparison of lowest Rfactor model with native
PF1 bacteriophage (4ifm)

Monomer

RMSD: 1.6Å

Assembly

RMSD: 1.7Å, Rfactor: 0.07
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Comparison of lowest Rfactor model with native
PH75 bacteriophage (1hgv)

Monomer

RMSD: 2.0Å

Assembly

RMSD : 2.6Å, Rfactor: 0.25
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Benchmark on Inoviruses - summary

PDB: 1ifp 1ql1 4ifm 1hgv
Phage: Pf3 Pf1 Pf1 PH75
Number of residues: 44 46 46 46
Helix units/turns: 27/5 27/5 71/13 27/5

Monomers (cmp.):
Rfactor: 0.11 0.12 0.07 0.25
RMSD (monomer): 0.7Å 1.6Å 1.6Å 2.0Å
RMSD (assembly): 0.8Å 1.7Å 1.7Å 2.5Å

It works!
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Still fragments are crucial...
RMSD distribution for Pf1 bacteriophage (1q11)

vall2008 vall2011

RMSD[Å] RMSD[Å]

RMSD = 1.6Å RMSD = 11.8Å
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Hibiscus Latent Singapore virus

Each subunit consist of 162 amino acid residues.
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Reciprocal scoring on CPU

for each layer_line l

for each bessel order n

for each reciprocal R

for each atom_i

for each atom_j

... gives 108 iterations for 46aa and 27 layer lines and takes 2-3s
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Execution Times
Scoring in reciprocal space
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Execution Times
Derivatives calculation in reciprocal space
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Software and hardware optimizations
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Scoring times comparison
Optimization of trigonometric functions
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Derivatives calculation time comparison
Optimization of trigonometric functions
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Scoring calculation on GPU

for each layer_line l

for each bessel order n
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Derivatives calculation on GPU

for each layer_line l

for each bessel order n
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Reciprocal space scoring times comparison
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Derivatives calculation time comparison
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Rfree - a cross-validation method

Modeling based on Rfactor is prone to over-fitting.

Because of low redundancy of data we cannot directly use
crystallographic Rfree.

We can, however optimally choose points from processed
data set.
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Rfree - a cross-validation method

Modeling based on Rfactor is prone to over-fitting.

Because of low redundancy of data we cannot directly use
crystallographic Rfree.

We can, however optimally choose points from processed
data set:
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Rfree - a cross-validation method

Modeling based on Rfactor is prone to over-fitting.

Because of low redundancy of data we cannot directly use
crystallographic Rfree.

for each set_of_optimal_points

Rfree = average(Rfactor)
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Rfactor and Rfree
a structure of Pf3 phage’s capsid (1ifp)

Etotal = Estructure + weight ∗ Eexperimental

Triangles - native structure, Rectangles - relaxed native structure
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Conclusions

We have successfully developed fiber diffraction modules
for Rosetta

We can de novo solve structures directly from fiber
diffraction data!

Larger systems can be approached with GPU based
computing.

Our approach presents an alternative to state-of-the-art
programs: CLEARER and X-PLOR
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Future overview
Bundle of aligned fibrils - we can solve it!

But fibrils are not always willing to align...
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Future overview
Misaligned fibrils - we hope we can solve it!

A lot of data available a no method to interpret them at the
moment!

51 / 53



Fiber
Diffraction
basics

FD data and
Rosetta

Benchmark

Performance

Rfree

Conclusions

Acknowledgements

Acknowledgements:

Ingemar André
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Thank you!

Thank you for your attention!
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