Design of self-assembling two-component protein nanomaterials

Self-assembling proteins have evolved to perform many extraordinary functions

http://pdbbeta.rcsb.org/pdb/education_discussion/molecule_of_the_month/poster_quickref.pdf

Self-assembling proteins have evolved to perform many extraordinary functions

http://pdbbeta.rcsb.org/pdb/education_discussion/molecule_of_the_month/poster_quickref.pdf

Many approaches have been taken to engineer novel selfassembling protein structures

Coiled-coil assembly

Nanomaterial-templated assembly

Metal-Directed Assembly

Lanci CJ, et al. (2012) PNAS 109:7304-9. Lai YT, et al. (2012) Science 336:1129. Grigoryan G, et al. (2011) Science 332:1071-6. Brodin JD, et al. (2012) Nat. Chem. 4:375-82. We developed a general method for designing assemblies composed of multiple copies of a single protein building block

Our method was validated by designing two novel protein cages with atomic-level accuracy

EM: Iadanza/Gonen (Janelia) Xtal: Sawaya/Yeates (UCLA) King NP, et al. (2012) *Science* **336**:1171-4.

Our method was validated by designing two novel protein cages with atomic-level accuracy

EM & Xtal: Vollmar/Gonen (Janelia) Sawaya/Yeates (UCLA)

King NP, et al. (2012) Science 336:1171-4.

One-Component Octahedron

One-Component Octahedron

One-Component Octahedron

Two-component nanomaterials offer many advantages over onecomponent systems

- Many more potential materials due to the many combinations of building blocks
 - 542 one-component cages docked
 - 992,824 two-component cages docked
- Each component could be independently functionalized and characterized
- Initiation of assembly could be controlled by mixing independently purified building blocks

Controlled Assembly

<u>Combinatorial</u> <u>Functionalities</u>

We have now developed a general method for the design of two-component symmetric protein assemblies

New docking code developed to sample additonal degrees of freedom and provide improved scoring metrics

- Enumeratively sample rigid body DOFs: rotation of each component about its symmetry axis and radial displacement along its symmetry axis
 - Search space reduced by sliding components into contact

- Score each configuration for "designability":
 - Sum of Cβ-Cβ contacts within 10 Å, weighted by secondary structure and average degree
 - Normalized by number of residues at interface

RosettaScripts movers, filters, and task operations developed/modified for two-component design and optimization

- Filter top-docked configurations by number of residues at interface
- Design (nstruct=50-100):
 - Randomly perturb 4 RB DOFs
 - Clash check filter
 - Fixbb soft rep design (reduced AA set + natives), hard min (chi + rb)
 - SASA filter
 - Fixxbb hard rep design (reduced AA set + natives), hard min (chi + rb)
 - Filter by shape complementarity, ddG, interface size, number of mutations, and number of buried unsatisfied polars
- Optimize shape complementarity using the GreedyOptMover
- Perform automated reversion to native using the GreedyOptMover
- Manually inspect and guide resfile based redesign

We chose T32 and T33 as our first targets and selected 60 designs for experimental characterization

- 252,100 pairs of building blocks were docked
- 1000 docked configurations for each architecture were sent through design
- Designs were filtered on ddG, sc, interface size, buried polars, etc.
- Greedy optimization of sc and governed aggressive reversion improved designs and reduced manual refinement

T32: Results from optimization

	Δ ddG	Δ uhb	Δ sc	Δ mutations
sc opt.	-1.326	-0.401	0.047	-2.75
Reversion	1.197	-0.005	-0.005	-7.7382

Designs were co-expressed in *E. coli* and analyzed for selfassembly to the intended architectures

Size-exclusion Chromatrography

Five out of 57 designs assemble to the target architecture

Negative Stain TEM

The designed interfaces resemble natural interfaces and reside mostly on elements of secondary structure

Preliminary crystal structures suggest the materials were designed with high accuracy

Structure	Resolution (Å)	R / R _{free}	RMSD (backbone, 24 chains)
T33-15	2.7	0.205/0.250	1.4
T33-21	2.6	0.232/0.242	1.5
T33-28	4.5	0.341/0.344	0.7
T32-28	4.0	0.274/0.301	2.5

McNamara/Yeates (UCLA)

Preliminary crystal structures suggest the materials were designed with high accuracy

McNamara/Yeates (UCLA)

Preliminary experiments suggest efficient *in vitro* assembly may be relatively straightforward

Conclusions and next steps

- Protein-protein interface design makes highly accurate nanomaterials design possible
- Two-component nanocage design may be a good system for testing new protein-protein interface design methods
 - Relatively high success rate with relatively simple design approach
 - One of few successful examples of simultaneous two-sided interface design
 - Designs are relatively simple to screen and highly crystallizable
- The method could represent a platform technology
- Next steps:
 - Design other two-component architectures: icosahedra, layers, etc.
 - Continue to refine methods to improve success rates
 - Develop general methods for designing regulatory mechanisms into the materials
 - Develop experimental methods for step-wise assembly
 - Design materials custom-tailored to particular applications

Acknowledgements

<u>UW</u> **David Baker Neil King Will Sheffler** Frank DiMaio John Sumida <u>Janelia Farm</u> Tamir Gonen Shane Gonen Breanna Vollmar Matt Iadanza Brent Nannenga

<u>UCLA</u> Todd Yeates Dan McNamara Michael Sawaya Support HHMI IAVI NSF GRFP