Cohesin-dockerin binding: Surprises in the study of a "simple" protein interaction

Ora Schueler-Furman

The Hebrew University, Jerusalem, Israel

RosettaCon 2012, 7/31/2012

A couple of years ago

• CAPRI target 12, cohesin-dockerin interaction: high resolution prediction of protein complex

The cellulosome

- Multi-protein complex that degrades cellulose
- Diversity achieved by:
 - Various hydrolases connected to dockerin
 - Promiscuous cohesin-dockerin binding
 - 2 different dockerin orientations
 - Different # of cohesin repeats on scaffoldin

Ed Bayer Weizmann Institute

Cohesin-dockerin interactions define character of cellulosome

Affinity, promiscuity and specificity in the cohesin-dockerin interaction

- Affinity: Very high (10⁻¹²M)
- Promiscuity: Intra-species

Specificity: Cross-species

Affinity, promiscuity and specificity in the cohesin-dockerin interaction

Affinity, promiscuity and specificity in the cohesin-dockerin interaction

Can we modify the specificity of this interaction?

Experimental Approach: Indirect ELISA (iELISA)

Slutzki, Barak, Reshef, Schueler-Furman, Lamed & Bayer. Methods in Enzymology 2012

Computational Approach: Alanine Scanning, Docking and Design

- Templates: complex structures of Ct and Cc coh-doc
- Alanine scanning -> interface hotspot residues
 - Rosetta 2.3
 - Rosetta 3.0 (different versions of Liz's protocol)
 - Also: FoldX, Hunter, Orbit, PBSA
- Docking -> model cohesin-dockerin complexes
- Design -> design of changes in binding affinity and specificity

Overview

- 1. The interface of the cohesin-dockerin interaction
 - Characterize interface patches and hotspots
- 2. Targeted manipulation of cohesin-dockerin binding specificity
 - Single mutations with dramatic effects
- 3. Outlook

Coh-doc interface: (I) hydrophobic conserved patch

E S	cohesin 🖁	dockerin				
	Ct_Repeat1 VFLFA Ct_Repeat2 VFLFA Ct_Repeat3 VFLFA Ct_Ct_at5 VFLFA Ct_ct_at5 VFLFA Ct_cpeat6 VFLFA Ct_Repeat7 VFLFA Ct_Repeat8 VFLFA Ct_Repeat9 VFLFA	18 21 48 Ct_XynY K // VI // VI Ct_GunA K // LL // MT Ct_GunD K // VI // VT Ct_GunF K // VI // LY Ct_SunF K // VI // LY Ct_XynZ K // LL // YS				
V48 L83 V21 V21 L22	Cc_Repeat1 SFLFL Cc_Repeat2 SFLFL Cc_Repeat3 SFLFL Cc_C_at4 SFLFL Cc_C_at5 SFLFL Cc_Repeat6 SFLFL Cc_Repeat7 SFLFL Cc_Repeat8 SILFL	Cc_GunA K // IM // LA Cc_GunG K // LL // MA Cc_GunD K // LL // FA Cc_GunF K // LL // YA Cc_GunC K // IL // FA				

(I) hydrophobic conserved patch: L83 is important for binding

Coh-doc interface: (II) hydrophilic patch in *Ct*

	37		120		121					
Ct_1	NCD	11	Ε	11	E					
Ct _2	NCD	11	E	11	E					
Ct_3	NCD	11	Е	11	E					
Ct_4	NCD	11	Ε	11	E			23		45
Ct_5	NCD	//	Ε	11	E	Ct	XvnY	R	11	ST
Ct_6	ct	11	Ε	11	E	Ct	GunA	K		SS
Ct_7		11	Ε	11	E	Ct	- GunD	K	11	SS
Ct_8	NCD	11	Ε	11	E	Ct	- GunF	K	11	ST
Ct_9	SGD	11	Ε	11	E	Ct	- XvnZ	G	11	ST
						-				
Cc_1	TCN	11	D	11	K					
Cc_2	TCN	11	D	11	K	Сс	GunA	А	11	AF
Cc_3	TCN	11	D	11	K	Cc	GunG	G	11	AI
Cc_4	TO	\mathbf{V}	D	11	K	Cc	- GunD	D	11	AI
Cc_5	Cc	X/	D	11	K	Cc	- GunF	Ν	11	AI
Cc_6	ι.CN	11	D	11	K	Cc	GunC	Т	11	AI
Cc_7	TCN	11	D	11	K	_	_			
Cc ⁸	TCN	11	D	11	K					

(II) hydrophilic patch in *Ct*: polar effects are more difficult to predict

Coh-doc interface: both patches contain putative interface hotspot residues ...

.. but not all are actually hotspots

No approach works 🛞

What went wrong? N37A vs. D39A

Possible reasons:

• N37 at rim of interface – flexible (flip sc)

- N37C_{β} not defined (2 σ)
- D39 defined

What went wrong? D39N

Possible reason:

D39 prevents homo-dimerization of Ct cohesin

Overview

- 1. The interface of the cohesin-dockerin interaction
 - Not as trivial as you would have thought.....
- 2. Targeted manipulation of cohesin-dockerin binding specificity
 - Single mutations with dramatic effects
- 3. Outlook

Coh N37A: promiscuous

Coh D39A: does not bind at all

Coh N37L: (partial) specificity switch

Coh N37L: (partial) specificity switch

Can we modify the specificity of this interaction? Yes we can! ... with single mutations

Conclusions

- Cohesin-dockerin interaction as model system for interaction affinity, specificity and promiscuity

 Single mutations with significant effect
- Hotspot prediction: easy for hydrophobic residues, very difficult for polar residues
- Additional parameters might be important:
 - Inaccuracies in solved structures
 - Competition between Homo-dimers and heterodimers
- Outlook: study context of interaction

Outlook: context of interactions

Interactions do not occur in isolation...

Example 1: Regulation by dimerization of HAMP domains Example 2: Regulation of substrate binding affinity by multiple cohesin repeats+ several ways to interact

Meena et al. (2010). J. Biol. Chem.

... Science does not either!

Acknowledgements

Furman lab 🙂: Dan Reshef

Lior Zimmerman, Michal Sperber, Assaf Faragy, Orly Marcu, Ron Aharoni, Vered Fishbain, Eran Kuchuk

Past members: Nir London (@UCSF), Barak Raveh (@UCSF), Dana Movshovitz-Attias (@Carnegie-Mellon)

Bayer lab: Michal Slutzki & Yoav

Barak

Excited about this work?

 Want to study outside the US?
 Want to study near the GMEC on earth?
 We are looking for talented new PhD students and PostDocs

