Folding with Coevolution

Evan H. Baugh

ehb250@nyu. edu

Bonneau Lab
RosettaCon X

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

What is coevolution?

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- which correlations are meaningful?

Why do we care?

- coevolution is not currently used in Rosetta

Why do we care?

- coevolution is not currently used in Rosetta
- sequence based

Why do we care?

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences

Number of entries in UniProtKB/TrEMBL

Why do we care?

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta

Why do we care?

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
- decoy discrimination

Why do we care?

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
- decoy discrimination
- Abinitio

Why do we care?

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
- decoy discrimination
- Abinitio
- docking

Why do we care?

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
- decoy discrimination
- Abinitio
- docking
- ligand docking

Why now?

- coevolution is difficult to determine

Why now?

- coevolution is difficult to determine
- sequence data are not independent

Why now?

- coevolution is difficult to determine
- transitivity of correlations

Why now?

- coevolution is difficult to determine
- transitivity of correlations

Why now?

- coevolution is difficult to determine
- transitivity of correlations

- non-coding coevolution

Why now?

- coevolution is difficult to determine
- transitivity of correlations

- non-coding coevolution
- new method: "Direct Information"

How can we detect coevolution?

- requires a diverse Multiple Sequence Alignment (MSA)

How can we detect coevolution?

- requires a diverse Multiple Sequence Alignment (MSA)
- identify correlated pairs using "Direct Information" (DI)

1	THNKS-RSETTA-DEVS
2	THNKSLRSETTAGDEVS
3	SHDKSLRSETTAADKIK
4	THNKSLRSETTAGDEVS
5	THGKSIRSATTEGDEVH
6	THNKSIRSETTASDELH
7	AHDKS-RSETTATDKVH
8	AHDKSWRSESSATDKAS
9	THEKS-RSETTATDKLS
10	THNKSCRSETTAADEVS

How can we detect coevolution?

- requires a diverse Multiple Sequence Alignment (MSA)
- identify correlated pairs using "Direct Information" (DI)

1	THNKS-RSETTA-DEVS
2	THNKSLRSETTAGDEVS
3	SHDKSLRSETTAADKIK
4	THNKSLRSETTAGDEVS
5	THGKSIRSATTEGDEVH
6	THNKSIRSETTASDELH
7	AHDKS-RSETTATDKVH
8	AHDKSWRSESSATDKAS
9	THEKS-RSETTATDKLS
10	THNKSCRSETTAADEVS

- DI is the mutual information of a MSA specific distribution

Direct Information

MSA

Direct Information

1. extract site and pair frequencies from the MSA MSA \rightarrow frequencies

Direct Information

1. extract site and pair frequencies from the MSA
2. downweight based on similarity* and incorporate pseudocounts

MSA \rightarrow frequencies

Direct Information

1. extract site and pair frequencies from the MSA
2. downweight based on similarity* and incorporate pseudocounts
3. determine the parameters of the constrained maximum entropy distribution ($P^{(d i r)}$) use systematic small-coupling expansion to estimate parameters
involves inversion of a connected correlation matrix
MSA \rightarrow frequencies $\rightarrow P^{(d i r)}$

Direct Information

1. extract site and pair frequencies from the MSA
2. downweight based on similarity* and incorporate pseudocounts
3. determine the parameters of the constrained maximum entropy distribution ($P^{(d i r)}$) use systematic small-coupling expansion to estimate parameters
involves inversion of a connected correlation matrix
4. calculate the MI of $P^{(d i r)}$ (the DI score)

MSA \rightarrow frequencies $\rightarrow P^{(d i r)} \rightarrow$ DI

Direct Information

1. extract site and pair frequencies from the MSA
2. downweight based on similarity* and incorporate pseudocounts
3. determine the parameters of the constrained maximum entropy distribution ($P^{(d i r)}$)
use systematic small-coupling expansion to estimate parameters
involves inversion of a connected correlation matrix
4. calculate the MI of $P^{(d i r)}$ (the DI score)
5. identify correlated pairs

MSA \rightarrow frequencies $\rightarrow P^{(d i r)} \rightarrow \mathrm{DI} \rightarrow$ pairs

MI

DI

DI

DI

Does it work?

- assume: DI pairs are physically close

Does it work?

- assume: DI pairs are physically close

Does it work?

- assume: DI pairs are physically close

What does it detect?

- identifies interdependent sites

What does it detect?

- identifies interdependent sites
- many of the best DI pairs are native-state contacts

What does it detect?

- identifies interdependent sites
- many of the best DI pairs are native-state contacts
- some pairs are homomeric contacts

What does it detect?

- identifies interdependent sites
- many of the best DI pairs are native-state contacts
- some pairs are non-native state contacts

What does it detect?

- identifies interdependent sites
- many of the best DI pairs are native-state contacts
- some pairs are binding interfaces

Is it useful?

- associated structure prediction algorithm EVfold

Is it useful?

- associated structure prediction algorithm EVfold
- constrained Crystallography \& NMR Systems suite (CNS)

Is it useful?

- associated structure prediction algorithm EVfold
- constrained Crystallography \& NMR Systems suite (CNS)
- use constraints derived from:
- DI pairs

Is it useful?

- associated structure prediction algorithm EVfold
- constrained Crystallography \& NMR Systems suite (CNS)
- use constraints derived from:
- DI pairs
- secondary structure prediction

Is it useful?

- associated structure prediction algorithm EVfold
- constrained Crystallography \& NMR Systems suite (CNS)
- use constraints derived from:
- DI pairs
- secondary structure prediction
- topology prediction (for transmembrane proteins)

Is it useful?

- associated structure prediction algorithm EVfold
- constrained Crystallography \& NMR Systems suite (CNS)
- use constraints derived from:
- DI pairs
- secondary structure prediction
- topology prediction (for transmembrane proteins)
- complicated...

How do we use it?

- use Rosetta AtomPairConstraints

How do we use it?

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

How do we use it?

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

2 challenge: some DI pairs are not physically close

How do we use it?

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

- challenge: may require many constraints

How do we use it?

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

- challenge: undetermined weight in Rosetta scoring

How do we use it?

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

- challenge: many constraint scores are quadratic

Can we keep it simple?

- original authors wanted the "distance between $\mathbf{C} \alpha$ atoms...less than 7A, set as a harmonic constraint at $4 \AA$ "

Can we keep it simple?

- original authors wanted the "distance between $\mathbf{C} \alpha$ atoms...less than 7A, set as a harmonic constraint at $4 \AA$ "
- try 10 best scoring DI pairs using the Rosetta HARMONIC scoring

Can we keep it simple?

- original authors wanted the "distance between $\mathbf{C} \alpha$ atoms...less than $7 \AA$, set as a harmonic constraint at $4 \AA{ }^{\circ}$
- try 10 best scoring DI pairs using the Rosetta HARMONIC scoring
- apply constraints during centroid stages of AbinitioRelax (20000 decoys)

Can we keep it simple?

- original authors wanted the "distance between $\mathbf{C} \alpha$ atoms...less than $7 \AA$, set as a harmonic constraint at $4 \AA$ "
- try 10 best scoring DI pairs using the Rosetta HARMONIC scoring
- apply constraints during centroid stages of AbinitioRelax (20000 decoys)
- compare the score v. RMSD plots with and without constraints for cluster centers of the lowest 400 scoring decoys

Can we keep it simple?

unconstrained constrained

Can we keep it simple?

unconstrained constrained

Where are we now?

- how do we properly score these constraints?
- can we classify the interactions identified by DI?
- can DI pairs indicate near-native decoys?
- do DI constraints improve AbinitioRelax?
- can DI constraints improve other protocols?

Thanks for listening!

Rich Bonneau
Kevin Drew
Doug Renfrew
Noah Youngs
Duncan Penfold-Brown
Glenn Butterfoss
Timothy Craven
Abba Leffler
Rebecca Alford
Leif Halvorson
Chris Poultney
The Bonneau Lab

Debora Marks - Harvard Medical School, Dept. of Systems Biology
Chris Sanders - Memorial Sloan-Kettering Cancer Center
Lucy Colwell - MRC Laboratory of Molecular Biology

The Rosetta Community
PyRosetta Team

