Folding with Coevolution

Evan H. Baugh

ehb250@nyu.edu

Bonneau Lab

RosettaCon X

when a "biological object" changes due to changes in another "biological object"

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

- when a "biological object" changes due to changes in another "biological object"
- correlated amino acid changes
- indicates functional association or physical interaction

which correlations are meaningful?

coevolution is not currently used in Rosetta

- coevolution is not currently used in Rosetta
- sequence based

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences

Number of entries in UniProtKB/TrEMBL

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
 - decoy discrimination

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
 - decoy discrimination
 - Abinitio

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
 - decoy discrimination
 - Abinitio
 - docking

- coevolution is not currently used in Rosetta
- sequence based
- only requires sufficiently diverse sequences
- many possible applications in Rosetta
 - decoy discrimination
 - Abinitio
 - docking
 - ligand docking

coevolution is difficult to determine

- coevolution is difficult to determine
- sequence data are not independent

- coevolution is difficult to determine
- transitivity of correlations

- coevolution is difficult to determine
- transitivity of correlations

- coevolution is difficult to determine
- transitivity of correlations

non-coding coevolution

- coevolution is difficult to determine
- transitivity of correlations

- non-coding coevolution
- new method: "Direct Information"

How can we detect coevolution?

requires a diverse Multiple Sequence Alignment (MSA)

How can we detect coevolution?

- requires a diverse Multiple Sequence Alignment (MSA)
- identify correlated pairs using "Direct Information" (DI)

1	ТH	NF	(S	—	R	S	E	ΤТ	A	—	D	E'\	7	S
2	тн	NF	(S	L	R	S	E	тт	A	G	D	E\	7	S
3	SH	DF	(S	L	R	S	E	ΤТ	A	A	D	K]	[]	K
4	ТH	NF	(S	L	R	S	E	ΤТ	A	G	D	E\	7	S
5	ТH	Gŀ	(S	Ι	R	S	A	ΤТ	E	G	D	E\	7]	H
6	ТH	NF	(S	Ι	R	S	E	ΤТ	A	S	D	EI		Η
7	AH	DF	(S	—	R	S	E	ТΤ	A	Т	D	K/	7]	Η
8	AH	DF	(S	W	R	S	E	SS	A	T	D	KZ	7	S
9	ТH	EF	(S	—	R	S	E	ТΤ	A	Т	D	K1		S
10	ТH	NF	S	С	R	S	E	ΤТ	Α	A	D	E'\	7	S

How can we detect coevolution?

- requires a diverse Multiple Sequence Alignment (MSA)
- identify correlated pairs using "Direct Information" (DI)

DI is the mutual information of a MSA specific distribution

MSA

1. extract site and pair frequencies from the MSA $MSA \rightarrow$ frequencies

- 1. extract site and pair frequencies from the MSA
- 2. downweight based on similarity* and incorporate pseudocounts

 $\text{MSA} \rightarrow \text{frequencies}$

- 1. extract site and pair frequencies from the MSA
- 2. downweight based on similarity* and incorporate pseudocounts
- 3. determine the parameters of the constrained maximum entropy distribution ($P^{(dir)}$) use systematic small-coupling expansion to estimate parameters involves inversion of a connected correlation matrix MSA \rightarrow frequencies $\rightarrow P^{(dir)}$

- 1. extract site and pair frequencies from the MSA
- 2. downweight based on similarity* and incorporate pseudocounts
- 3. determine the parameters of the constrained maximum entropy distribution ($P^{(dir)}$) use systematic small-coupling expansion to estimate parameters involves inversion of a connected correlation matrix
- 4. calculate the MI of $P^{(dir)}$ (the DI score) MSA \rightarrow frequencies $\rightarrow P^{(dir)} \rightarrow$ DI

- 1. extract site and pair frequencies from the MSA
- 2. downweight based on similarity* and incorporate pseudocounts
- 3. determine the parameters of the constrained maximum entropy distribution $(P^{(dir)})$ use systematic small-coupling expansion to estimate parameters involves inversion of a connected correlation matrix
- 4. calculate the MI of $P^{(dir)}$ (the DI score)
- 5. identify correlated pairs $MSA \rightarrow frequencies \rightarrow P^{(dir)} \rightarrow DI \rightarrow pairs$

DI

DI

DI

Does it work?

assume: DI pairs are physically close

Does it work?

assume: DI pairs are physically close

Does it work?

assume: DI pairs are physically close

identifies interdependent sites

- identifies interdependent sites
- many of the best DI pairs are native-state contacts

- identifies interdependent sites
- many of the best DI pairs are native-state contacts
- some pairs are homomeric contacts

- identifies interdependent sites
- many of the best DI pairs are native-state contacts
- some pairs are non-native state contacts

- identifies interdependent sites
- many of the best DI pairs are native-state contacts
- some pairs are binding interfaces

associated structure prediction algorithm EVfold

- associated structure prediction algorithm EVfold
- constrained Crystallography & NMR Systems suite (CNS)

- associated structure prediction algorithm EVfold
- constrained Crystallography & NMR Systems suite (CNS)
- use constraints derived from:
 - DI pairs

- associated structure prediction algorithm EVfold
- constrained Crystallography & NMR Systems suite (CNS)
- use constraints derived from:
 - DI pairs
 - secondary structure prediction

- associated structure prediction algorithm EVfold
- constrained Crystallography & NMR Systems suite (CNS)
- use constraints derived from:
 - DI pairs
 - secondary structure prediction
 - topology prediction (for transmembrane proteins)

- associated structure prediction algorithm EVfold
- constrained Crystallography & NMR Systems suite (CNS)
- use constraints derived from:
 - DI pairs
 - secondary structure prediction
 - topology prediction (for transmembrane proteins)
- complicated...

use Rosetta AtomPairConstraints

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

challenge: some DI pairs are not physically close

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

challenge: may require many constraints

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

challenge: undetermined weight in Rosetta scoring

- use Rosetta AtomPairConstraints
- can coevolution constraints improve Abinitio?

challenge: many constraint scores are quadratic

 original authors wanted the "distance between Cα atoms…less than 7Å, set as a harmonic constraint at 4Å"

- original authors wanted the "distance between Cα atoms…less than 7Å, set as a harmonic constraint at 4Å"
- try 10 best scoring DI pairs using the Rosetta HARMONIC scoring

- original authors wanted the "distance between Cα atoms…less than 7Å, set as a harmonic constraint at 4Å"
- try 10 best scoring DI pairs using the Rosetta HARMONIC scoring
- apply constraints during centroid stages of AbinitioRelax (20000 decoys)

- original authors wanted the "distance between Cα atoms…less than 7Å, set as a harmonic constraint at 4Å"
- try 10 best scoring DI pairs using the Rosetta HARMONIC scoring
- apply constraints during centroid stages of AbinitioRelax (20000 decoys)
- compare the score v. RMSD plots with and without constraints for cluster centers of the lowest 400 scoring decoys

unconstrained constrained

unconstrained constrained

Where are we now?

- how do we properly score these constraints?
- can we classify the interactions identified by DI?
- can DI pairs indicate near-native decoys?
- do DI constraints improve AbinitioRelax?
- can DI constraints improve other protocols?

Thanks for listening!

Rich Bonneau

Kevin Drew

Doug Renfrew

Noah Youngs

Duncan Penfold-Brown

Glenn Butterfoss

Timothy Craven

Abba Leffler

Rebecca Alford

Leif Halvorson

Chris Poultney

The Bonneau Lab

Debora Marks - Harvard Medical School, Dept. of Systems Biology Chris Sanders - Memorial Sloan-Kettering Cancer Center Lucy Colwell - MRC Laboratory of Molecular Biology

The Rosetta Community

PyRosetta Team