Flexible Backbone Design with the Sequence Tolerance Protocol

Colin Smith \& Amelie Stein
RosettaCon 2012-July 3I, 2012

Why Have an Ensemble?

- Accounting for natural flexibility
- phi/psi dependence of amino acid probability
- Iterative methods often get trapped
- Adding premutation of starting structure may require structural relaxation

Backrub Ensembles

- Apply 10,000 Backrub/side chain moves (more may be necessary)
- Make an ensemble of 20-200 backbones

Starting Structure (2QMT)
Backrub Ensemble

Fitness Function

Backbone-Backbone Hydrogen Bonds

Monomer
 BBHB, \#I

Published: 0.4, 0.4

Dimer

BBHB, \#I, \#2, \#I-2
Published: 0.4, 0.4, 0.4, I

Trimer

BBHB, \#I, \#2, \#3

$$
\text { \# I - 2, \# | - } 3, ~ \# 2-3
$$

Published: ?

Running the Sequence Tolerance Protocol

- Input files
- Python Script
- Parameters
\# This function is the main data processing procedure. It takes a directory \# path which contains *.ga.entities files. It reads all those files and
\# produces a set of boxplots in several different file formats. It also
\# generates a position weight matrix and FASTA file for producing a sequence \# logo. By specifying plotgen=TRUE, it will produce a plot similar to \# Figure 5 in the PLoS One manuscript.

```
process_seqtol <- function(dirpath = ".", fitness_coef = c(1/2.5, 1/2.5, 1/2.5, 1),
    temp_or_thresh = 0.228,
    type = c("boltzmann", "cutoff"),
    percentile = .5, prefix = "seqtol",
    plotgen = FALSE, plotseq = TRUE) {
```

> source("path/to/sequence_tolerance.R")
> process_seqtol(".", c(1/2.5, 1/2.5))
This is also equivalent:
> process_seqtol(fitness_coef=c(1/2.5, 1/2.5))

http://cran.r-project.org/doc/manuals/R-intro.html

Changing Sequence Variability in Post Processing

- Temperature for Boltzmann weighting (or down-weighting fitness function coefficients)
- Percentile (probably not worth touching)

Alter Sequence Variability in Ensemble Generation

- Backrub low vs. last
- Backrub temperature
- KIC
- Relax

- if your results indicate very sharp residue preferences at each position or are very flat, check the ensemble variability
- large structures or badly scoring native conformations may need tweaking

Ensemble generation with vicinity KIC

- you'll need a loop covering each protein individually: LOOP (start+1) (end-1)
- key command line changes:
loopmodel.linuxgccrelease
-in:file:fullatom
-loops:refine refine_kic
-loops:outer_cycles 1
-loops:refine_init_temp 1.2
-loops:refine_final_temp 1.2
-loops:vicinity_sampling true
-loops:vicinity_degree 3

For even more diversity, try fastrelax

Standard Monomeric:

 process_seqtol(fitness_coef $=c(0.4,0.4))$

Residue A33 Sequence Tolerance Boxplot

Naïve Monomeric:

 process_seqtol(fitness_coef=c(I, I))

Residue A30 Sequence Tolerance Boxplot

Gotcha

- Designing at too many positions artificially limits sequence variability

How Many Generations?

> process_seqtol(fitness_coef=c(1/2.5, 1/2.5), plotgen=TRUE)

Scoring Issues

- -no_his_his_pairE flag instead of his reweighting

References

- Smith, C.A. \& Kortemme,T. (2008) Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 380, 742-756.
- Lauck, F., Smith, C.A., Friedland, G. F., Humphris, E. L., \& Kortemme, T. (2010) RosettaBackrub--a web server for flexible backbone protein structure modeling and design. Nucleic Acids Res 38 Suppl, 569-575.
- Smith, C.A. \& Kortemme, T. (20I0) Structure-Based Prediction of the Peptide Sequence Space Recognized by Natural and Synthetic PDZ Domains. J Mol Biol 402, 460-474.
- Smith, C.A. \& Kortemme, T. (20II) Predicting the Tolerated Sequences for Proteins and Protein Interfaces Using RosettaBackrub Flexible Backbone Design. PLoS One 6.

