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• vast conformational 
space

• large energy barriers 
and narrow minima

diversification

intensification

• inherently coupled to sampling

Key problems and approaches

annealing



Overview of sampling improvement strategies

• Taboo Sampling promotes diversity in centroid 
stage models 

- keep track of the torsion bins that have 
been sampled so far

- pick phi/psi combinations from 
underrepresented bins instead of randomly

putation is required if the native structure can be
sampled in readily available amounts of computer
time. However, for proteins for which the native
state is sampled very rarely or not at all, it is very
difficult to determine how much additional com-
puting power is necessary. The question of how
much more computing power is necessary is critical:
if the answer is 10-fold more, the problem may be
solved by increasing computing resources; however,
this is not a feasible solution if the answer is a
million-fold more. Estimation of the magnitude of
the sampling problem is thus quite important, as is
the identification of the primary bottlenecks to
conformational sampling, which could lead to
improved approaches to the problem.
Here we characterize the conformational sampling

problem in Rosetta using a discrete feature space
representation of protein structures that enables the
estimation of the amount of conformational search-
ing (and computer time) required to predict the
structure of proteins quite generally. The discrete
features we employ are secondary structure, torsion
angle bins, and β-contacts (Fig. 1). We first show that
the native feature values provide sufficient informa-
tion for Rosetta trajectories to consistently sample
the native structure for a wide variety of proteins.
Next, we show that the general conformational
sampling problem can be formulated as a discrete
sampling problem in feature space, and that this
allows the estimation of the amount of sampling
required for predicting the structure of proteins that
are out of reach of current computing power.We find
proteins that require very large amounts of sampling
contain “linchpin” features whose native values are
sampled at extremely low rates, and enforcing the

native values of these features drastically increases
the rate of native state sampling. The linchpin
features frequently occur in functional regions that
are likely under local conformational strain, and
comparison to experimental studies of protein
folding suggests that these obstacles to folding in
silico may also be obstacles to folding in reality.

Results

Previous successes in high-resolution de novo
structure prediction using Rosetta have relied on
generating low-resolution models on a large number
of sequence homologs along with the target se-
quence in order to successfully sample the near-
native region of the energy landscape.With the large
amount of CPU time available through Rosetta@
home, which consists of over 150,000 computers,
roughly half of which are available for use at any
given time, large-scale sampling runs without using
information from sequence homologs can be suc-
cessful. To determine how well structures can be
predicted using single-sequence information and to
set a baseline for subsequent experiments, we
investigated the performance of Rosetta on a test
set of 32 small α-helical and α–β protein domains by
generating many independent models using differ-
ent random number seeds starting from an extended
chain. Models were generated using the standard
Rosetta Monte Carlo and gradient-based energy-
minimization strategy, which consists of a low-
resolution conformational search followed by full-
atom refinement. Trajectories were also started from
the native structure using the full-atom refinement

Fig. 1. Mapping between three-dimensional structures and a lower-dimensional discrete feature space. The trans-
formation from conformation space to feature space can be achieved by reading off the (a) torsion angle bins, (b)
secondary structure, and (c) β-contacts from the three-dimensional structure. The transformation from feature space to
conformation space can be achieved by carrying out Rosetta trajectories in which the feature values in a particular feature
string are enforced.
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Overview of sampling improvement strategies

• Taboo Sampling promotes diversity in centroid 
stage models 

Ting et al., PLoS Comp Biol 2010

• Neighbor-dependent Ramachandran 
distributions (rama2b) enable sampling phi/psi 
combinations considering the adjacent residues

Bin Qian
DE Kim et al., JMB 2009

• Ramp the weight of fa_rep and rama to get over 
energy barriers and into narrow minima



• “tractable” 

‣ small enough that a considerable fraction of the 
conformational space can in principle be sampled

• “diverse”

‣ success and failure cases

• established benchmark set

‣ we have a performance baseline

‣ measurable improvements are not trivial

Local conformational sampling as a “model system” to test 
new strategies
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Non-pivot Cα

Pivot Cα

Pivot 1

Pivot 3

Pivot 2

Coutsias et al. J Comp Chem 2004.
Mandell, Coutsias & Kortemme, Nat Methods 2009

The robotics-inspired Kinematic Closure method (KIC) can be 
generalized to work for protein segments of any length 



Non-pivot torsions, sampled from Ramachandran space

Non-pivot Cα

Pivot Cα

Pivot 1

Pivot 3

Pivot 2

Coutsias et al. J Comp Chem 2004.
Mandell, Coutsias & Kortemme, Nat Methods 2009

The robotics-inspired Kinematic Closure method (KIC) can be 
generalized to work for protein segments of any length 



Non-pivot torsions, sampled from Ramachandran space

Non-pivot Cα

Pivot Cα

Coutsias et al. J Comp Chem 2004.
Mandell, Coutsias & Kortemme, Nat Methods 2009

The robotics-inspired Kinematic Closure method (KIC) can be 
generalized to work for protein segments of any length 
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Experimental loop 
structure

Prediction 
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• side chains within 
10A of the 
remodeled region 
are repacked

- no native 
rotamers 
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Near-native conformations are rarely sampled across the 
benchmark set (12-residue loops in 45 structures)
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Narrow minima are difficult to sample
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Taboo Sampling increases diversity among sampled 
conformations
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Neighbor-dependent phi/psi sampling enriches near-native 
conformations despite scoring problems
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Individual changes only have moderate effects on the overall 
benchmark performance
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Synergy between the individual strategies leads to considerable 
improvement in sampling near-native conformations 
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The percentage of near-native decoys increases for most cases 
in the benchmark set
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Conclusions

• Significant improvement in 
sampling of near-native 
conformations 

• Synergy is key - combining 
different modifications led to 
considerable improvements 
overall

• Ideal testing ground for 
energy function 
improvements

- orbitals with Steven 
Combs (Meiler Lab)
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Outlook

• KIC with fragment insertion

• Add sampling of omega 
angles as well as bond 
lengths & angles
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Outlook

• KIC with fragment insertion

• Add sampling of omega 
angles as well as bond 
lengths & angles

• Conformational space 
annealing

• Replica exchange

• Alternative conformations 
& switch loops

• Dynamically determining 
flexible regions during 
design  
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