Rational design of protein inhibitors using Oligooxopiperazines (OOPs)

RosettaCon 2012 Kevin Drew Tuesday, July 31, 2012

Tosovska, P., 2010

Outline

Motivation and Background

- helical mimetics
- MDM2 P53 protein interface
- OOPs
- Inhibitor Design
 - Design Protocol
 - Designs
 - Binding Mode
 - Scaffold Library

Outline

Motivation and Background

- helical mimetics
- MDM2 P53 protein interface
- OOPs
- Inhibitor Design
 - Design Protocol
 - Designs
 - Binding Mode
 - Scaffold Library

Rationally design a molecule to disrupt a specific protein interaction

- screening is expensive and laborious
- small molecules do not span full interaction interface
- use natural interface as starting point

Rationally design a molecule to disrupt a specific protein interaction

- screening is expensive and laborious

• NIH screening program (MLP) funding has been cut due to budget constraints after ~900 million over 9 years Wadman Nature Biotechnology (2012)

- small molecules do not span full interaction interface
- use natural interface as starting point

Rationally design a molecule to disrupt a specific protein interaction

- screening is expensive and laborious

• NIH screening program (MLP) funding has been cut due to budget constraints after ~900 million over 9 years Wadman Nature Biotechnology (2012)

- small molecules do not span full interaction interface

• ~300 - 1000 A^2 protein - small molecule interactions vs ~1500 - 3000 A^2 protein protein interactions Wells & McClendon Nature (2007)

- use natural interface as starting point

Rationally design a molecule to disrupt a specific protein interaction

- screening is expensive and laborious

• NIH screening program (MLP) funding has been cut due to budget constraints after ~900 million over 9 years Wadman Nature Biotechnology (2012)

- small molecules do not span full interaction interface
 - ~300 1000 A^2 protein small molecule interactions vs ~1500 3000 A^2 protein protein interactions Wells & McClendon Nature (2007)

- use natural interface as starting point

• mimic hotspot residues on a stable proteolytic resistant scaffold

Inhibitor Design - Background Helical memetic successes

Hydrogen bond surrogate -

inhibits Hypoxia Inducible Factor I / coactivator interaction

Henchey et al JACS 2010

Inhibitor Design - Background Helical memetic successes

Hydrogen bond surrogate -

inhibits Hypoxia Inducible Factor I / coactivator interaction

Henchey et al JACS 2010

Alpha-beta peptides -

binds bcl2 family (anti-apoptotic protein)

Boersma et al JACS 2011

Inhibitor Design - Background Helical memetic successes

Hydrogen bond surrogate -

inhibits Hypoxia Inducible Factor I / coactivator interaction

Alpha-beta peptides -

binds bcl2 family (anti-apoptotic protein)

Boersma et al JACS 2011

Henchey et al JACS 2010

Terphenyl -

disruption of gp41 oligomerization

Ernst et al ACIE 2002

Inhibitor Design - Model System

P53 - MDM2 Protein Interaction

P53 transactivating domain (green) bound to MDM2 (electrostatic) pdbid: 1YCR. (Kussie et al. Science 1996)

Side chains important for binding shown in lines.

Inhibitor Design - Model System

P53 transactivating domain (green) bound to MDM2 (electrostatic) pdbid: 1YCR. (Kussie et al. Science 1996)

Side chains important for binding shown in lines.

Inhibitor Design - Model System

P53 transactivating domain (green) bound to MDM2 (electrostatic) pdbid: 1YCR. (Kussie et al. Science 1996)

Side chains important for binding shown in lines.

Nutlins - small molecules known to disrupt interaction, ~140nM IC50

Inhibitor Design - Scaffold Oligooxopiperazines (OOPs)

Tosovska, P. 2010

Mimics i, i+4 and i+7 residues of helix

Peptide backbone with C-C bond

Easy to synthesize (solid phase)

Outline

Motivation and Background

- helical mimetics
- MDM2 P53 protein interface
- OOPs
- Inhibitor Design
 - Design Protocol
 - Designs
 - Binding Mode
 - Scaffold Library

How does Rosetta energy function compare?

How does Rosetta energy function compare?

Quantum Calculations

Approach - Gaussian QM Software

Rotate each bond 360° (increment 15°)

Hartree-Fock optimization

B3LYP 6-31G(d) energy calculation

MP2 6-31G(d) energy calculation

How does Rosetta energy function compare?

Quantum Calculations

<u>Approach</u> - Gaussian QM Software

Rotate each bond 360° (increment 15°)

Hartree-Fock optimization

B3LYP 6-31G(d) energy calculation

MP2 6-31G(d) energy calculation

Ramachandran Map

How does Rosetta energy function compare?

Quantum Calculations

<u>Approach</u> - Gaussian QM Software

Rotate each bond 360° (increment 15°)

Hartree-Fock optimization

B3LYP 6-31G(d) energy calculation

MP2 6-31G(d) energy calculation

Ramachandran Map

Quantum vs Rosetta: Phi/Psi energy comparison

Quantum vs Rosetta: Phi/Psi energy comparison

Quantum

B3LYP SOLV 6-31G(d)

Quantum vs Rosetta: Phi/Psi energy comparison

Quantum

B3LYP SOLV 6-31G(d)

Rosetta

MM: Lennard-Jones potential, Lazaridius Karplus solvation, Hbond, reference energy

Quantum vs Rosetta: Phi/Psi energy comparison

Quantum

B3LYP SOLV 6-31G(d)

Rosetta

MM: Lennard-Jones potential, Lazaridius Karplus solvation, Hbond, reference energy

Design Movie

l st pos	2nd pos	4th pos
dimethyl-PHE	hydroxy-phenylglycine	dehydro-LEU
3methyl-PHE	phenyglycine	fluoro-LEU
4methyl-PHE		
naphthyl-alanine		

10

Tuesday, July 31, 12

Design Movie

l st pos	2nd pos	4th pos
dimethyl-PHE	hydroxy-phenylglycine	dehydro-LEU
3methyl-PHE	phenyglycine	fluoro-LEU
4methyl-PHE		
naphthyl-alanine		

10

FWFL

FWFL

[3-methyl-PHE] WFL

FWFL

[3-methyl-PHE] WFL

FWFL

[3-methyl-PHE] WFL

FWF Norleucine

Metric	FWFL	[3-methyl-PHE]WFL	FWF Norleucine
Kd	6.9 uM Bullock (Arora Lab)	pending	pending

Omega Trans or Cis?

Trans

Tuesday, July 31, 12

Omega Trans or Cis?

Trans

Omega Trans or Cis?

Trans

Omega Trans or Cis?

Trans

Omega Trans or Cis?

Quantum

Trans

Cis

Omega Trans or Cis?

Trans

Cis

Energy Complex (REU) = -31.264

Energy Complex (REU) = -32.493

Omega Trans or Cis?

Trans

Cis

Energy Complex (REU) = -31.264

Energy Complex (REU) = -32.493

Cis orientation explains experiment: FWFL Kd = **6.9uM** FWKL Kd > **200uM**

LLL

DDD

LLL

DDD

LLL

Tuesday, July 31, 12

DDD

DDL

LLL

LLL LLD LDL

DDD DDL

LLL LLD LDL

DDD DDL DLD

DDD DDL DLD

DDD DDL DLD

Acknowledgements

<u>Rosetta-</u> <u>Commons</u>

Brooke Bullock*

Bonneau Lab

P. Douglas Renfrew* Glenn Butterfoss* Alex Greenfield Aviv Madar Chris Poultney Duncan Penfold Brown Leif Halvorsen Kieran Mace Noah Youngs Christoph Hafemeister Evan Baugh Tim Craven Abba Leffler Patrick Winters (former)

Funding

DOD DOE NSF NYU SOM NIH Training Grant Fellowship

<u>Committee</u>

Alex Morozov (Rutgers Physics) Christine Vogel (NYU Biology) Jane Carlton (NYU Parasitology) Paramjit Arora (NYU Chemistry) Richard Bonneau (NYU Biology)