Flexibility Prediction: Preserving Detailed Balance in Side Chain and Backbone Movers

Colin A. Smith - Kortemme Lab RosettaCON - Wednesday, August 4, 2010

Predicting Flexibility With Monte Carlo Simulations

Movers Using Solution #1

- BackrubMover
 - Problem: Branching atoms sampled nonuniformly
- SmallMover and ShearMover
 - Problem: Phi/Psi angles biased by Ramachandran plot
 - Solution: Turn off Ramachandran biasing

Rotamer Packing vs. SidechainMover

Rotamer Packing

high probability rotamer wells sampled uniformly

discrete chi angles sampled within rotamer wells

always selects a random rotamer configuration

you have to worry about library resolution (-ex1, -ex2, etc.) <u>SidechainMover</u>

all rotamer wells sampled with PDB probability

chi angles sampled continuously from a Gaussian distribution

can also sample within current rotamer well or all chi angles uniformly

all possible chi angle combinations are sampled

$\operatorname{Testing}_{\pi_{A}}^{\pi} \xrightarrow{p_{AB}}_{p_{BA}} \stackrel{q_{AB}}{\models} \stackrel{q_{AB}}{\xrightarrow{q_{AB}}} \operatorname{Balance}_{BA}$

- Strategy: Ruhasimulations and make sure mevers generate expected populations. $a_{AB} = e^{(E_A - E_B)/kT}$
- Easiest population to predict: Empty scoring function: $a_{AB} = \frac{1}{Q_{AB}} e^{(E_A - E_B)/kT}$
- Use simplified systems for nightly testing:
 - SidechainMover: Single residue poses
 - Other movers: 8 residue polyalanine

SidechainMover Example: Arginine Angle Histograms

chi l

Without

chi 2

chi 3

ARG 1: atom_id= atomno= 10 rsd= 1 type= 1 (MSE: 0.004605)

chi 4

 000^{-1}_{-150} $000^{-1}_{$

ARG 1: atom_id= atomno= 7 rsd= 1 type= 1 (MSE: 9.857e-06)

ARG 1: atom_id= atomno= 8 rsd= 1 type= 1 (MSE: 7.236e-06)

ARG 1: atom_id= atomno= 9 rsd= 1 type= 1 (MSE: 1.535e-06)

ARG 1: atom_id= atomno= 10 rsd= 1 type= 1 (MSE: 8.354e-06)

-150 -100 -50 0 50 100 150 Degrees

SmallMover Example: Polyalanine Residue 4

BackrubMover Example: Polyalanine Residue 4

Yuan Liu: Backbone Biased Gaussian Mover

Monte Carlo Update for Chain Molecules: Biased Gaussian Steps in Torsional Space G. Favrin, A. Irbäck and F. Sjunnesson, J.Chem. Phys. 114, 8154 (2001)

= What kT to ApproximateRoom <math>Hemperature Flexibility?

$$a_{AB} = \frac{1}{q_{AB}} e^{(E_A - E_B)/kT}$$

 Set an upper bound on Rosetta "room temperature" by running extended simulations of proteins

Ē

Pick the temperature where none unfold

All 6 Proteins Unfold at 0.6 kT

All 6 Proteins Are Stable at 0.3 kT

10 Simulation Mean RMSD

kT = 0.3 kT = 0.4 kT = 0.5 kT = 0.6

Model System: Cyclophilin A

- Catalyzes proline cis-trans isomerization
- Localized side chain/backbone flexibility near the active site has been observed crystallographically and shown to be temperature dependent
- Studies have shown correlations between the rate of protein motion and catalysis
- Even if there is no causation, this is still an interesting system because of the crystallographic motion

Crystallography shows alternate conformations at room temperature

Most of the alternate conformations occur in the 2 beta sheets of the beta sandwich

Fraser et al. Nature 2009

Crystallography shows alternate conformations at room temperature

Major Conformation (A) Minor Conformation (B)

Fraser et al. Nature 2009

Crystallography shows alternate conformations at room temperature

Major Conformation (A) Minor Conformation (B)

Fraser et al. Nature 2009

Little Phenylalanine Motion at 0.3 kT

Cyclophilin Protocol Changes

- Restricted sampling to 8 angstroms around Ser 99 & Phe 113
- Raised temperature to 4.8 kT (tried 0.6-2.4 along the way)
- Added simultaneous backrub side chain sampling
- Increased inter-rotamer sampling from 45% to 70%

Phenylalanine Intraconverts at 4.8 kT

Major (A)

Minor

Thanks

Thomas Bliska (Williams College) Tanja Kortemme (UCSF) Jerome Nilmeier (UCB) Yuan Liu (UW) Liz Kellogg (UW) Andrew Leaver-Fay (UNC) David Baker (UW)

> DOD Genentech