Improving the Design of a Chimeric (βα)₈-Barrel with Rosetta

VANDERBILT UNIVERSITY

Will Proffitt MEILER LAB.ORG

Protein Evolution Through Recombination

A viable evolutionary strategy?

Posetta Conzoro

Crystal Structure Reveals 9th Beta Strand

...formed from an attached histidine purification tag

O HisF Fragment O CheY Fragment O 9th Strand

Rosetta Consolo

Energy Comparison with Wildtype Fragments In Rosetta

8/8/2010

Energy Comparison with Wildtype Fragments Reveals Stress Along the Interfaces

(Approx. Δ-2 Score12 Units)

RosettaCon2010

Rosetta Predicts Six Mutations Are Necessary to Reach Wild Type Energy

Posetta Conzoro

Rosetta-suggested mutations stabilize the fold, reducing clash along the interfaces of the two fragments

Size Exclusion Chromatography (SEC) indicates the mutated chimera is less prone to oligomerization

Comparison of Unfolding by Chemical Denaturation Indicates that Rosetta Mutations Stabilize the Fold

RosettaCon2010

HSQC of HisF and CheYHisF with the Rosetta Mutations Shows Similar Dispersion and Ordered Structure

Posetta Conzolo

Conclusions

- *Lego* style fragment combination is a viable strategy for building larger proteins
- Using existing structures to build new models allows for trivial ddG calculations to find potential problems in the design BEFORE you get to the wetlab.
- Chimeric proteins have limitless potential

Posetta Conzoro

Acknowledgements

- Jens Meiler
- Birte Höcker
- Simone Eisenbeis
- Kristian Kaufmann
- Meiler Lab
- Höcker Group

MEILER LAB.ORG

Posetra Con 2010

Protein Design - Can we build larger proteins by combining fragments of smaller ones?

• Inverse Folding Problem

- De novo design is difficult: assume a total of 100 conformations for all 20 natural occurring amino acids side chains in a 100 amino acid protein → 10²⁰⁰ possible conformations!
- Instead of starting from scratch, can we build larger proteins by **combining fragments** of smaller ones?

Outline

- Background
- Redesign of the Chimera with Rosetta
- Experimental Validation
- Implications for Protein Design

Outline

- Background
- Redesign of the Chimera with Rosetta
- Experimental Validation
- Implications for Protein Design

Chimeras capitalize on nature's hypothesized pathway to larger proteins by using modular assembly

 Many proteins in nature share fragments that are similar in structure and sequence

 Modular assembly protocol can be applied to the design of new structures

Soeding J, Lupas AN (2003) "More than the sum of their parts: On the evolution of proteinsfrompeptides." BioEssays 25:837–846. 8/8/2010 MFILFR LAB. ORG

Crystal structure reveals an extra beta strand

Bharat TAM, Eisenbeis S, Zeth K, Höcker B "A βα-barrel built by the combination of fragments from different folds" *Proc Natl Acad Sci* **2008 105:9942–9947**

Outline

- Background
- Redesign of the Chimera with Rosetta
- Experimental Validation
- Implications for Protein Design

Locating Clash in the Chimera

Energy Comparison with Wildtype Fragments Reveals Stress Along the Interfaces

Redesigning the Chimera in Rosetta

Redesigning the Chimera in Rosetta

Rosetta Predicts Seven Mutations Are Necessary to Reach WildType Energy

MEILER LAB.ORG

Sequence comparison reveals commonalities in the best ranked designs

Mutation Analysis

Significant improvement along the first and second interfaces

Before: -2.70 reu/aa

After: -2.90 reu/aa

Outline

- Background
- Redesign of the Chimera with Rosetta
- Experimental Validation
- Implications for Protein Design

The Chimera with the Rosetta Mutations

Size Exclusion Chromatography (SEC) Shows New Chimera is Less Prone to Oligomerization

Comparison of Unfolding by Chemical Denaturation Indicates that Rosetta Mutations Stabilize the Fold

HSQC of HisF and CheYHisF with the Rosetta Mutations Shows Similar Dispersion and Ordered Structure

CheYHisF+RM

Incremental Addition of Mutations shows Theoretical Pathway for Cloning in the wetlab

Comparison of Experimentally and Computationally Obtained ΔG Values Shows very Successful Prediction/Ranking for Specific Mutants

Experimental ΔG vs. Rosetta Energy for 4-Mutation Mutants

Outline

- Background
- Redesign of the Chimera with Rosetta
- Experimental Validation
- Implications for Protein Design

Implications for Protein Design

- Concatenation of protein subunits combined with a computational protocol to redesign interfaces could allow for rapid creation of larger design proteins
 - Higher probability of achieving the predicted fold
 - Retain active sites of the respective protein subunits

Acknoledgements

- Jens Meiler
- Birte Hoecker
- Simone Eisenbeis
- Kristian Kaufmann

Experimental ΔG rankings vs. Rosetta Energies

 Comparison of experimentally and computationally obtained ΔG values shows very successful prediction/ranking for specific mutants.

