Predicting Temperature-Sensitive Mutations

Chris Poultney Bonneau Lab NYU

Motivation

- Find temperature-sensitive mutations
- Method to generate "top 5" list
- Use Rosetta to model mutations
- Machine learning for prediction

Conditional and "ts" Mutations

Wikipedia: Genetics

Conditional Mutation

- Wild-type (wt) phenotype under permissive conditions
- Mutant phenotype under <u>restrictive</u> conditions
- Temperature-Sensitive (ts)
 - Restrictive condition is different temperature
- Context
 - Knock-out libraries (YKO)
 - Embryonic lethal phenotype

Lyons LA, Imes DL, Rah HC, Grahn RA (2005) Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus). Anim Genet **36:** 119-126

Causes of ts Behavior

- What changes at restrictive temperature?
 - Drop in level or activity of gene product
- Implications for Rosetta-based method
 - Likely to detect
 - Decrease in stability
 - Failure to fold
 - Unlikely to detect
 - Reduced function (e.g., catalysis, DNA binding)
 - Aggregation

Chakshusmathi G, Mondal K, Lakshmi GS, Singh G, Roy A, Ch RB, Madhusudhanan S, Varadarajan R (2004) Design of temperature-sensitive mutants solely from amino acid sequence. Proc Natl Acad Sci U S A **101:** 7925-7930

Sandberg WS, Schlunk PM, Zabin HB, Terwilliger TC (1995) Relationship between in vivo activity and in vitro measures of function and stability of a protein. Biochemistry **34:** 11970-11978

Generating ts Mutations

Category	Method(s)	Screening	Probability
Whole genome mutation	EMS, X-ray,	~100,000	~0.00001
Single gene mutation	PCR mutagenesis	~10,000	~0.0001
Single gene mutation	Diploid shuffle	~10,000	~0.0001*
Prediction from sequence	Burial from sequence	~65	~0.1
Prediction from structure	Тор5	~5	~0.4

Suzuki DT, Grigliatti T, Williamson R (1971) Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proc Natl Acad Sci U S A **68**: 890-893 Dohmen RJ, Wu P, Varshavsky A (1994) Heat-inducible degron: a method for constructing temperaturesensitive mutants. Science **263**: 1273-1276

Zeidler MP, Tan C, Bellaiche Y, Cherry S, Hader S, Gayko U, Perrimon N (2004) Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol **22**: 871-876

Ben-Aroya S, Coombes C, Kwok T, O'Donnell KA, Boeke JD, Hieter P (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell **30**: 248-258

Chakshusmathi G, Mondal K, Lakshmi GS, Singh G, Roy A, Ch RB, Madhusudhanan S, Varadarajan R (2004) Design of temperature-sensitive mutants solely from amino acid sequence. Proc Natl Acad Sci U S A **101:** 7925-7930

Method Overview

Rosetta & Finding the "Sweet Spot"

- "Sweet Spot": intermediate degree of destabilization
 - Moderate increase in energy (e.g. fa_rep)
- Proteins vary in starting energy and properties (e.g. stability)
- Rosetta score function
- Allow structure to adjust to mutation

green: ts blue: non-ts

Rosetta Protocol

- Start with native structure
- Model mutations at buried sites (<10% accessible)
- Perform 50 relax runs
 - Generates model ensembles and score files

Relax Ensemble

relax.linuxgccrelease -database \$MINI_DB -s YPL228W-W251A.pdb -native YPL228W.pdb -nstruct 50 -relax:fast -out:file:scorefile YPL228W-W251A.sc -out:pdb_gz

version: 3.0 release

Scores to Features

- How to quantify effect of mutation?
 - Different starting energy
 - Different native qualities
- Requirements
 - Compare score term <u>distributions</u>
 - Normalize across proteins
- Compare quartiles of mutant and native ensembles

Machine Learning

• Input: 81 features

- 75 from from Rosetta score terms
- 6 other (accessibility, etc.)
- Training set: yeast, worm, and fly from literature
 - 382 samples: 75 ts, 207 non-ts
- Algorithms
 - SVM-L: SVM with linear kernel
 - SVM-G: SVM with gaussian kernel (RBF)

Cross-Validation Results

SVM-L: 0.692±.074 SVM-G: 0.808±.082 rnd: 0.366

SVM-L: 0.359 SVM-G: 0.113

Top Features

- Most important features
 - 'Qn' suffix score-term-to-feature conversion
 - Residue change
 - aminochange, p_aa_ppQ3, ramaQ2
 - Local structure change
 - fa_repQ2, hbond_sr_bbQ2, hbond_bb_scQ1
 - Global structure change
 - gdtmm2_2Q3, gdtmm1_1Q3
 - Changes within relax run
 - Repack_stdev_scoreQ2, Repack_average_scoreQ2

Experimental Validation

- Initial validation on three species
 - Worm: Kris Gunsalus & Fabio Piano
 - Fly: Claude Desplan
 - Yeast: David Gresham
- Current yeast validation
 - Made predictions on yeast actin
 - 375 residues, well-characterized
 - Difficult to find ts mutations at random
 - Chose 7 candidates from SMO-L, SVM-G top 5
 - Literature search: all mutations uncharacterized
 - [insert cool results here]

Future Work

- Improving speed
 - Current algorithm: global (runs over every residue)
 - In development: local (runs only on residues near mutation)
 - Estimated speedup ~10-fold
- ts prediction for the masses
 - Public web server
 - Submit structure of interest
 - Receive ranked list of candidate ts mutations

Thanks

Dennis Shasha Rich Bonneau Glenn Butterfoss Kevin Drew Kris Gunsalus Michelle Gutwein David Jukam David Gresham

Processing Scores: Quartile Method

 Calculate percentile of mutation ensemble quartiles Q1, Q2, Q3 w.r.t. native ensemble

Output:(omegaQ1, omegaQ2, omegaQ3) = (0.150, 0.499, 0.672)

Training Method

Training Set

- Split into 80% / 20%
- Parameter selection: 10-fold CV on 80%
- Testing: train on 80%, test on 20%
- Repeat 5x

