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QSAR Model Validates 5-HT Binding 
Mode to Serotonin TransporterMode to Serotonin Transporter

 hSERT is a 
Neurotransmitter ::Neurotransmitter :: 
Sodium Symporter
(NSS) with twelve TM 
domains
A homolog LeuT was A homolog LeuTAa was 
crystallized with 22% 
sequence identity to 
hSERT, increases to 

45% i b t t~45% in substrate 
binding site

 RosettaLigand docking 
into homology model 
with full Ligand and 
Protein Flexibility
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Kaufmann, K. W.; et al. "Structural determinants of species-selective substrate recognition in human and Drosophila serotonin 
transporters revealed through computational docking studies" Proteins 2009, 74, 630-42.
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Treatment Strategies for CNS Dis-
orders through Modulation of mGluRorders through Modulation of mGluR5

Allosteric positi e mod lation (acti ation) of mGl R ma Allosteric positive modulation (activation) of mGluR5 may 
ameliorate the symptoms of schizophrenia.

 Allosteric negative modulation of mGluR5 offers a potential 
treatment strategy of fragile X syndrome symptoms, a CNS 
di d i t d ith ti t di d (ASD)
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disorder associated with autism spectrum disorders (ASD).



High-Throughput Screen yields 1387 
PAMs and 345 NAMs of mGluRPAMs and 345 NAMs of mGluR5

 150,000 compounds were tested for allosteric modulation of mGluR5
i t i d d i t ll l l f l i 1 387measuring receptor-induced intracellular release of calcium. 1,387 

(0.94%) compounds were verified as PAMs of mGluR5. 345 (0.23%) 
compounds were verified as NAMs of mGluR5.
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Niswender, C. M.; Johnson, K. A.; Luo, Q.; Ayala, J. E.; Kim, C.; Conn, P. J.; Weaver, C. D. Mol Pharmacol 2008, 73, 1213-24.



Relate Chemical Structure and 
Biological ActivityBiological Activity

Chemical StructureChemical Structure

Biological Activity
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Biological Activity



Transformation-Invariant, Problem-
Optimized Numerical DescriptionOptimized Numerical Description
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Machine Learning Calculates Activity 
from Numerical Descriptionfrom Numerical Description

Chemical Structure
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Radial Distribution Functions 
describe 3D shapedescribe 3D shape …
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… but can also Encode Chemical 
Properties such as PolarizabilityProperties such as Polarizability
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Mapping Descriptor Space
into Hyperspaceinto Hyperspace



Optimizing the set of chemical 
descriptors for the given targetdescriptors for the given target
Number descriptors

HTS T i i O ti i ti (ROC )
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 Aqueous solubility



Optimizing the set of chemical 
descriptors for the given targetdescriptors for the given target
Number descriptors

HTS T i i O ti i ti (ROC )
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Optimizing the set of chemical 
descriptors for the given targetdescriptors for the given target
Number descriptors
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Virtual Screen for Highly Active 
Compounds and Novel LeadsCompounds and Novel Leads

HTS T i i O ti i ti (ROC )vHTS Training Optimization (ROC curves)
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Experimental Results mGluR5
Positive Allosteric ModulatorsPositive Allosteric Modulators

~450,000 Mueller, R.; et al. "Identification of 
Metabotropic Glutamate Receptor

ChemBridge
Metabotropic Glutamate Receptor 
Subtype 5 Potentiators Using Virtual 
High-Throughput Screening" ACS 
Chem. Neurosci 2010, 1, 288-305.

824 Compounds predicted with EC50 < 1μM by QSAR model

232 Compounds (28 1%) were confirmed as mGlur5 PAMs232 Compounds (28.1%) were confirmed as mGlur5 PAMs
Enrichment = 28.1% / 0.96% = 30
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Experimental Results mGluR5
Negative Allosteric ModulatorsNegative Allosteric Modulators

~750,000

ChemBridge

749 Compounds with novel Scaffolds predicted 
with EC50 < 10μM by QSAR model

12 Compounds (1 6%) were confirmed as mGlur5 NAMs12 Compounds (1.6%) were confirmed as mGlur5 NAMs
Enrichment = 1.6% / 0.23% = 7

VU0360620‐1
EC = 124 nM

VU0240790‐4
EC = 75 nM HET HETEC50 = 124 nMEC50 = 75 nM

HET

CNAr

HET

COOEtAr
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BCL::PHARMMAP – Computes Partial 
Derivatives of Property vs StructureDerivatives of Property vs. Structure 
 The Algorithm

Input 
Scaffold

Monte Carlo 
Structure Generator

Derivatives
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BCL::PHARMMAP – Generation of 
Chemical DerivativesChemical Derivatives

+

scaffold substituents derivatives

-X -X- ÷X÷ =X-
-OH -C(CH3)3 -NH2 -H -CH2- ÷CH÷ =CH-

COOH NH(CH ) CH F NH N N-COOH -NH(CH3) -CH3 -F -NH- ÷N÷ =N-
-CHO -N(CH3)2 -Ph -Cl -O-
-SH -OCH3 -CH2CH3 -Br -S-

9 August 2010 © Jens Meiler 22

3 2 3

-SCH3 -CH=CH2 -CH(CH3)2 -I -CO-



The Benzoxazepine Scaffoldp
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increase decreaseneutral



BCL::PHARMMAP versus CoMFA

≈

PHARMMAP CoMFA
150,000 # Compounds & biological activities used 118

s-m Runtime h-ys-m Runtime h-y

NO Superimposition on common scaffold required? YES

Charge
Bulk
P l i bilit

Physicochemical properties considered Charge
B lkPolarizability

# H-bond D/A
Bulk
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Prioritizing Compounds for Chemical 
Synthesis using 3D SARSynthesis using 3D SAR

9 August 2010 © Jens Meiler 25



Outline

 Ligand-Guided Virtual High-Throughput Screening Identifies 
Allosteric Modulaters of Metabotropic Glutamate Receptors

 BCL::PharmMap: Comprehensive, Rapid, and Robust 
Pharmacophore Mapping using QSAR Models

 RosettaLigand: 80% Success Rate for Docking into 
Comparative Models with full Ligand and Protein Flexibility

 RosettaLigand Algorithms for Ligand Ranking and Fragment-
B d D D iBased Drug Design

 QSAR-Derived Pharmacophore Maps Discriminate incorrect 
P i Li d D ki i t C ti M d lPoses in Ligand Docking into Comparative Models

9 August 2010 © Jens Meiler 26



RosettaLigand: Docking with Full 
Ligand and Receptor FlexibilityLigand and Receptor Flexibility

Meiler, J.; Baker, D. "ROSETTALIGAND: Protein-small molecule docking with full , ; , g
side-chain flexibility" Proteins 2006, 65, 538-548.

Kaufmann, K.; Glab, K.; Mueller, R.; Meiler, J. "Small Molecule Rotamers Enable 
Simultaneous Optimization of Small Molecule and Protein Degrees of Freedom in p g
ROSETTALIGAND Docking" In German Conference on Bioinformatics; Beyer, A., 
Schroeder, M., Eds.: Dresden, 2008; pp 148-157.

Davis, I. W.; Baker, D. "RosettaLigand docking with full ligand and receptor , ; , g g g p
flexibility" J Mol Biol 2009, 385, 381-92.

Davis, I. W.; Raha, K.; Head, M. S.; Baker, D. "Blind docking of pharmaceutically 
relevant compounds using RosettaLigand" Protein Sci 2009, 18, 1998-2002.

Kaufmann, K. W.; Dawson, E. S.; Henry, L. K.; Field, J. R.; Blakely, R. D.; Meiler, J. 
"Structural determinants of species-selective substrate recognition in human and 
Drosophila serotonin transporters revealed through computational docking studies" 

p g g , ,
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p p g p g
Proteins 2009, 74, 630-42.



Docking to Comparative Models is 
Successful in 80% of CasesSuccessful in 80% of Cases  
 Flowchart Rosetta

Models
RMSD < 2.5 Å  
in top 10 

Rosetta
Models

RMSD < 2.5 
Å  in top 10

Protein/Ligand complexes 
with multiple homologs

covering a range of 
similarities

CASP 8 targets 
with Ligands

2AYR 1/3

2FAI 2/3

2B1V 2/3

1B8O 1/3

1VFN 3/3

1SQA 0/2

1O3P 1/2

Construct Rosetta 
comparative model

Select #1 Model of 
each Group

1FD0 2/4

1FCX 1/4

1FCZ 0/4

1Y1M 5/5

1O3P 1/2

1F5K 1/2

CASP Models

RosettaLigand Docking with Full 
Protein and Ligand Flexibility

1PBQ 2/5

1PB9 4/5

2QWE 2/3

2QWD 2/3

3D8B 0/(N/A)

3DLZ 1/(N/A)

3DAO 0/(N/A)

3DA1 1/(N/A)

 Docking to Rosetta Comparative Models 
succeeds for at least one comparative model 
in 18 of 21 cases

 Docking to CASP models succeeds in 7 of 9 

2QWB 2/3

1TSY 0/3

1NJE 2/3

3DKP 1/(N/A)

3DLS 1/(N/A)

3DLC 1/(N/A)

3DME 1/(N/A)
g

cases

9 August 2010 © Jens Meiler 28

1NJA 1/3

1V48 2/3

3DME 1/(N/A)

3DOU 1/(N/A)



Comparative Models Show Similar 
Binding Funnels to X ray StructuresBinding Funnels to X-ray Structures
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•33% Seq ID. / 36% in Binding Site
•Ligand RMSD 0.67 Å
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RMSD
•Interface RMSD 1.63 Å



Success Rate is Largely Independent 
From Sequence SimilarityFrom Sequence Similarity
 Success Rate improves if ligand 

i b d i t l t
 Success rate is independent from 

i il itis bound in template sequence similarity
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Computer-Aided Drug Design in 
RosettaRosetta

Ensemble of protein Search CSD for ligand
backbones fragments that match filters

Backbone dependent 
rotamer libraries from PDB

For each fragment create 
CSD based rotamersrotamer libraries from PDB

Find a starting fragment and a starting position

CSD based rotamers

Randomly perturb ligand orientation and position

MC Accept

Sample side-chain and ligand rotamers

Randomly perturb ligand orientation and position

MC Accept

Minimize side chain and backbone DOF
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Find an extension that improves energy score



Ligand Design using Rosetta Scriptsg g g p
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Fragment Extension 1 is Accepted as 
Predicted Binding Energy IncreasesPredicted Binding Energy Increases

-7.20 -9.31
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Fragment Extension 2 is Rejected as 
Predicted Binding Energy DecreasesPredicted Binding Energy Decreases

9 31 5 32-9.31 -5.32
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www.rosettacommons.orgg

 Rosetta consists of multiple 
modules: protein foldingmodules: protein folding, 
comparative modeling, ligand
docking, protein design, 
antibody/antigen interactions, etc.

 Rosetta is developed in a Rosetta is developed in a 
consortium of twelve laboratories 
by around 50 developers

 Rosetta is free for academic us; 
id d i luser guide and tutorials are 

available
 PyRosetta is a python interface 

that allows integration with Pymol
 FoldIt is the better video game for 

you and your kids
 Rosetta@home uses your 

computer for our research
RosettaCon 2009, Leavenworth, WA, USA

computer for our research 
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Kaufmann, K. W.; et al. "Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You" Biochemistry 2010.
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Amyloid β-Peptide-Binding Alcohol 
Dehydrogenase (ABAD) InhibitorsDehydrogenase (ABAD) Inhibitors
 Inhibitor bound crystal structure (PDB ID:1U7T)
 High-throughput screening data (PubChem ID: 893)
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PharmMap Predictions Match 
Experimental DataExperimental Data

 Co-crystallized Inhibitor PharmMap for steric bulk
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increase decreaseneutral



Pseudo-Potential Scores Agreement 
of Pharmacophore Map with Dockingof Pharmacophore Map with Docking

 Attractive interaction between sites in pharmacophore map that prefer 
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p p p p
addition of hBond acceptors (red) and hBond donor sites in the protein



Scoring Terms are Implemented in 
RosettaLigand Centroid DockingRosettaLigand Centroid Docking
 Additional grids store information 

b t H b d t d Habout H-bond acceptors and H-
bond donors, charge, and 
polarizability in the protein

 These grids are precalculated
enabling rapid scoring needed for 
i t l ivirtual screening

 The low-resolution sampling is 
enhanced to allow translations 
and rotations to improve original 
shape complementary score in 
dditi t haddition to pharmmap scores
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Pseudo-Potential Scores Agreement 
of Pharmacophore Map with Dockingof Pharmacophore Map with Docking

 Attractive interaction between sites in pharmacophore map that prefer 
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p p p p
addition of hBond acceptors (red) and protein hBond donor sites (blue)



Conclusion

 quantitative 3D SAR models enable virtual high-throughput 
i f t l b t d t b t i iti fscreening of external substance databases to prioritize for 

acquisition. Novel chemotypes are detected. 

 pharmacophore maps derived from 3D SAR models guide 
hit-to-lead optimization by prioritizing synthesis.

 80% success rate for RosettaLigand docking into com-
parative models with full side chain and backbone flexibility.

 Coming next: RosettaLigand fragment-based drug design 
and pharmacophore maps as docking restraints.and pharmacophore maps as docking restraints.
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The ACCRE Cluster –
3000 Processors at Your Service3000 Processors at Your Service
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