

Using JD2 for your protocols

Or: the squeaky wheel got the grease

Steven Lewis
Kuhlman lab

Outline

● What is A job distributor?
● What's in THE job distributor?
● Why should I use it?
● How do I use it?

What is a job distributor?

● IO:
● Two for loops: over -s/-l and -nstruct
● Reads inputs in, prints outputs out
● Handles my_pdb_0001.pdb numbering

● Cluster architecture layer
● Single processor
● Multiprocessor MPI
● BOINC
● Oliver's BlueGene stuff

What's in it? - no time for philosophy

● JobDistributor
● Polymorphic singleton-managed class

– Access from any part of the code
● Contains main running loop for Rosetta (virtual, but

not yet rewritten)
● Polymorphism allows for different cluster

architectures/behaviors
● Contains other classes plugged into slots

Input

● JobInputter
● Determine what jobs exist
● Determine where to get them
● Get them when requested; cache them across

nstruct
● Subclassed for:

– PDBs
– Silent files
– etc

Output

● JobOutputter
● Prints jobs when completed
● Determines when jobs are already complete
● Subclassed for:

– PDBs
– Silent files
– etc

JobDistributorFactory

● Reads command line (and compile-time for
MPI)

● Which class to use in each hierarchy?

Job and InnerJob

● Contains ID for job and a link to the starting
structure for the trajectory

Parser integration

● Parser runs under jd2
● All parser protocols automatically jd2

Why use it?

● Provides
portability!!!
!!
!!
!!
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!eleventyone

Why use it?

● Provides portability
● Embedded filtering: jobs can report status

● Pass
● Fail, repeat
● Fail, don't repeat
● Fail, kill my friends because they'll fail too

● Fancy extra output in PDB/scorefile like ++
● Mover refreshing between trajectories

No embedded checkpointing

Here's the push

● We really want all the release apps on jd2
● Users ask us for this constantly!
● Portability – example: 3.1 AbinitioMPI hack
● Shared documentation and methods for cluster

architecture
● Unified functionality
● We agreed to it at last minicon; some progress has

been made
● Replace release apps with jd versions for stuff like

score_jd2 and docking_protocol_jd2

OK, I'm sold

● Comes free with RosettaScripts
● Your code MUST BE IN A MOVER
● Your mover requires no JD2 handles

● But you can use them for the cool features

● Trivially short main
● Examples:

● src/apps/pilot/JD2/jd2test.cc Only purpose is example!
● src/apps/public/scenarios/FloppyTail.cc – complete protocol

built with JD2 in mind, simple enough for one file

Moving from oldJD to JD2

● Must remove oldJD hooks!
● If you run JD2-hooked code without JD2...

● It does NOT fail
● It does NOT necessarily work with extra output, etc

● So you can add JD2 hooks then remove oldJD

Fancier stuff

● Oliver has multiple extra systems in place
● Silent files only on BlueGenes?
● I don't know how to use them so ask him

● The system is very extensible!
● Make your own subclasses for your own purposes!

