RosettaEPR: An Integrated Tool for Protein Structure Determination from Sparse EPR Data

Stephanie Hirst RosettaCon August 4, 2010

Why Combine Experimental Restraints with Rosetta?

- computationally infeasible to exhaustively sample all of conformational space
- experimental data bias search to more native-like conformations
- allows for validation of predicted structures

SDSL-EPR Provides Structural Information in the Form of Spin Label Distances

- SDSL-EPR: <u>site-directed spin labeling electron paramagnetic</u> resonance
 - Make cysteine double mutant
 - Attach paramagnetic spin label
 - Subject protein to external magnetic field
- Electron-electron interaction gives rise to spin label distance data

Strengths and Weaknesses of SDSL-EPR

Strengths

- No crystallization
- No size constraints
- Can study protein in native environment
- Doesn't require much sample (pmoles)

Weaknesses

- Perturbation of structure upon spin labeling
- Sparseness of EPR data
- Modeling the spin label
- Doesn't yield atomicdetail models directly

The Cone Model Translates EPR Experimental Data to Structural Restraints

nethanethiosulfonate (MTS) spin label

Knowledge-Based Cone Model Statistics Reflect Experimental Observations

- Simulated spin label (cone model) was placed at every pair of exposed residues in a protein
- Computed d_{SL}- d_{Cβ}
- Repeated for 3,584 soluble proteins in Dunbrack database
- Converted to potential via the Boltzmann relation

Wang, G. and Dunbrack, R. L. Bioinformatics (2003) 19, 1589-1591.

New EPR Knowledge-Based Potential Requires a New Constraint Function

- SplineFunc added to constraint function types
- Reads in any histogram and create a cubic spline over it
- Given a value of x (e.g., d_{Cβ}), return the corresponding energy
- When specifying EPR_DISTANCE, reads in EPR distance histogram from the database and returns the appropriate energy for d_{SL}- d_{Cβ}
- Can call by -constraints::epr_distance

cst type	atm1	res1	atm2	res2	function	RosettaEPR	dsl	wt	bin size
AtomPair	CB	31	CB	43	SPLINE	EPR_DISTANCE	6.0	4.0	0.5

RosettaEPR Benchmarking Protocol

- Benchmark: T4-lysozyme (PDB ID: 2LZM) residues 58-164
- *De novo* folded 10,000 models with 25 distance restraints
 - scored with bounded restraint potential and knowledge-based potential over a range of weights
- Computed $RMSD_{C\alpha}$ over core and exclude all loops

De novo Folding with EPR Restraints Improves Sampling Overall

Weight	% Models with RMSD _{Cα} < 3.5Å	% Models with RMSD _{Cα} < 7.5Å	% Models with RMSD _{Cα} < 3.5Å	% Models with RMSD _{Cα} < 7.5Å
0	0.03	7.17		
	RosettaEPR		Bour	nded
1	0.73	21.98	0.89	37.56
2	1.41	31.07	1.18	40.95
3	2.01	37.20	1.58	41.84
4	2.05	42.08	1.62	41.09
5	1.83	45.65	1.43	40.44
6	1.60	47.29	1.40	39.50
7	1.35	49.60	1.40	38.42
8	1.31	51.21	1.62	38.01
9	0.87	50.89	1.59	37.42
10	1.02	52.70	1.57	37.22
20	0.51	54.89	1.44	34.02
30	0.46	53.28	1.22	32.77
40	0.25	49.74	1.27	32.16
50	0.17	47.43	1.12	32.27
60	0.07	43.86	1.01	31.07
70	0.03	43.95	1.29	31.67
80	0.02	43.07	1.34	31.05
90	0.01	40.92	1.39	31.22
100	0.01	41.11	1.12	30.62

Knowledge-Based Potential Consistently Recovers the Correct Topology Better

Weight	% Models with RMSD _{Cα} < 3.5Å	% Models with RMSD _{Cα} < 7.5Å	% Models with RMSD _{Cα} < 3.5Å	% Models with RMSD _{Cα} < 7.5Å
0	0.03	7.17		
	RosettaEPR		Boun	ded
1	0.73	21.98	0.89	37.56
2	1.41	31.07	1.18	40.95
3	2.01	37.20	1.58	41.84
4	2.05	42.08	1.62	41.09
5	1.83	45.65	1.43	40.44
6	1.60	47.29	1.40	39.50
7	1.35	49.60	1.40	38.42
8	1.31	51.21	1.62	38.01
9	0.87	50.89	1.59	37.42
10	1.02	52.70	1.57	37.22
20	0.51	54.89	1.44	34.02
30	0.46	53.28	1.22	32.77
40	0.25	49.74	1.27	32.16
50	0.17	47.43	1.12	32.27
60	0.07	43.86	1.01	31.07
70	0.03	43.95	1.29	31.67
80	0.02	43.07	1.34	31.05
90	0.01	40.92	1.39	31.22
100	0.01	41.11	1.12	30.62

At Optimal Weight, Knowledge-Based Potential Recovers more Native-Like Models

Weight	% Models with RMSD _{Cα} < 3.5Å	% Models with RMSD _{Cα} < 7.5Å	% Models with RMSD _{Cα} < 3.5Å	% Models with RMSD _{Cα} < 7.5Å
0	0.03	7.17		
	RosettaEPR		Bou	nded
1	0.73	21.98	0.89	37.56
2	1.41	31.07	1.18	40.95
3	2.01	37.20	1.58	41.84
4	2.05	42.08	1.62	41.09
5	1.83	45.65	1.43	40.44
6	1.60	47.29	1.40	39.50
7	1.35	49.60	1.40	38.42
8	1.31	51.21	1.62	38.01
9	0.87	50.89	1.59	37.42
10	1.02	52.70	1.57	37.22
20	0.51	54.89	1.44	34.02
30	0.46	53.28	1.22	32.77
40	0.25	49.74	1.27	32.16
50	0.17	47.43	1.12	32.27
60	0.07	43.86	1.01	31.07
70	0.03	43.95	1.29	31.67
80	0.02	43.07	1.34	31.05
90	0.01	40.92	1.39	31.22
100	0.01	41.11	1.12	30.62

RosettaEPR Enhances Sampling of Correctly Folded Models

The Knowledge-Based Potential Improves Correlation of Score and Model Quality

RMSD_{Cα} (Å)

Best-Scoring Mode RMSD_{Cα}

8.24Å 7.61Å 4.17Å

De novo Folded Models Must be Refined to Atomic Detail

Predicted Models of T4-lysozyme can be Refined to 1.7Å Accuracy

Conclusions

- RosettaEPR knowledge-based potential allows for better sampling of native-like folds
- The knowledge-based potential is more robust than bounded restraint potential
- Can choose atomic-detail model based solely on the Rosetta all-atom scoring function

But Wait! There's More...

Bounded Restraints Perform much Better with Fewer Restraints

But Bounded Restraints Perform About the Same in Rosetta2

So What's Really Going On?

- In Rosetta2, *de novo* folding with fewer long-range restraints scored by a bounded potential seemed to do perform the same.
- In Rosetta3, folding with fewer restraints resulted in *significantly* better recovery of correctly folded models.
- Given:
 - These protocols probably meant to be used with several short-range distances
 - Using more restraints can lead to over-penalization and restrict sampling
- What are the differences between the Rosetta2 and Rosetta3 FoldConstraints protocols?

Acknowledgements

Jens Meiler Nathan Alexander Kristian Kaufmann Samuel DeLuca Gordon Lemmon The Meiler Lab

Hassane Mchaourab Kelli Kazmier

Rosetta Community

Funding: NIH-1R01GM080403

The Cone Model Translates EPR Experimental Data to Structural Restraints

Alexander, N., et al, Structure (2008) 16, 181-195.

The Cone Model was Used to Convert EPR Distances to a Bounded Restraint Potential

- Simulated spin label (cone model) was placed at a random position on the surface of the ellipsoid
- Computed d_{SL} $d_{C\beta}$
- Repeated until had 10,000 distances

Simplified Cone Model Can be Used to Convert DsI-Dcb to Bounded Restraints

Bounded Restraint Potential Could be Improved to Contain More Information

- The previously reported cone model statistics did not reflect nuances in experimental data.
- Probably due to low-resolution of the ellipsoid model and low number of d_{SL} $d_{C\beta}$ values computed
- Restraints used were therefore broad and lacked information content
- Expect to gain more information by using real proteins and collecting more data

A Knowledge-Based Potential is More Informative than Simple Bounded Restraints

RosettaEPR Recovers More Native-Like Models than Bounded Restraints

Repeat Using Fewer Restraints with Highest Information Content...

Restraint Type	# Restraints	% Models RMSD < 3.5Å	% Models RMSD < 7.5Å	correlation coefficient
none	0	0.03	7.17	0.42
KB potential	25	2.05	42.08	0.62
bounded	25	1.62	41.09	0.51
KB potential	16	1.47	38.03	0.62
bounded	16	3.17	53.35	0.60
KB potential	8	1.52	34.44	0.59
bounded	8	2.69	53.75	0.59

Rosetta2 testing information content...

Restraint Type	# Restraints	% Models RMSD < 5Å
none	0	0.00
bounded	25	0.94
bounded	16	2.03
bounded	8	1.65