
Application of Rosetta to GPCR Comparative Models

Elizabeth N. Dong Meiler Lab, Vanderbilt University RosettaCon 08.05.10

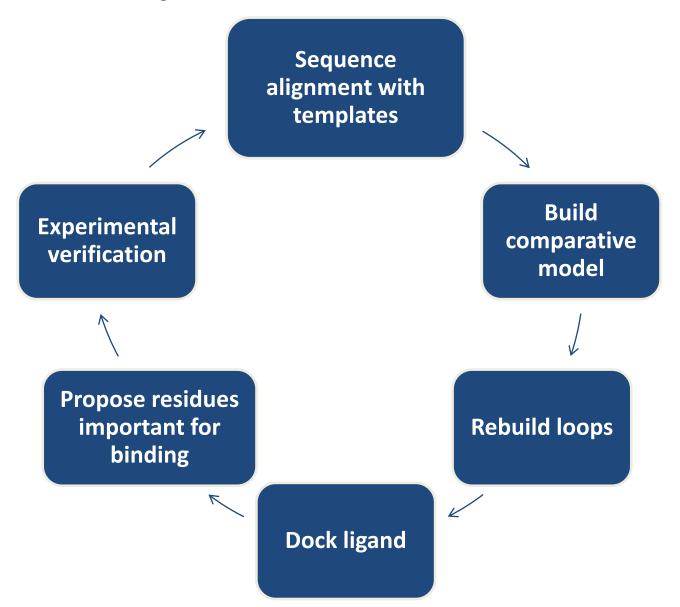
GPCRs: Ideal therapeutic targets with little structural information

NPY receptors:

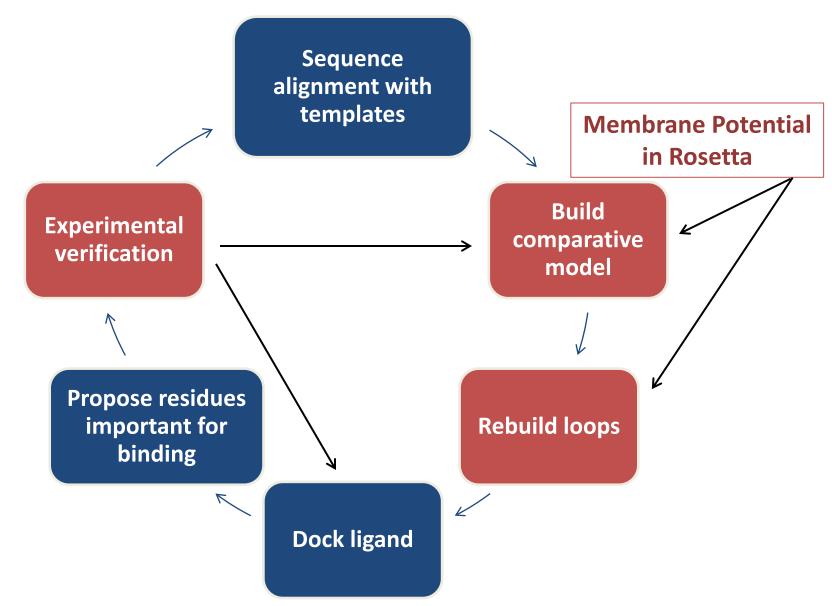
-breast cancer and obesity therapy

mGlu receptors:

-allosteric modulators target schizophrenia & Fragile X syndrome


Challenges of GPCR Modeling:

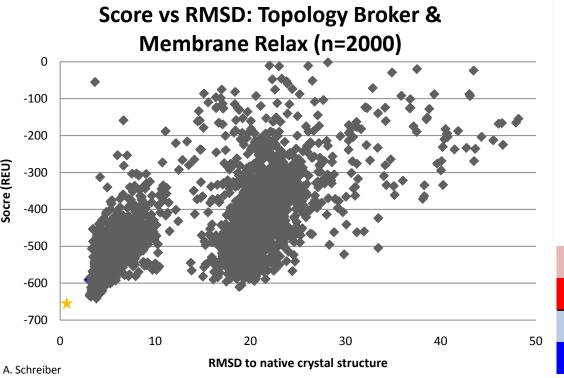
- 1. membrane protein
 - -> use the Rosetta membrane potential

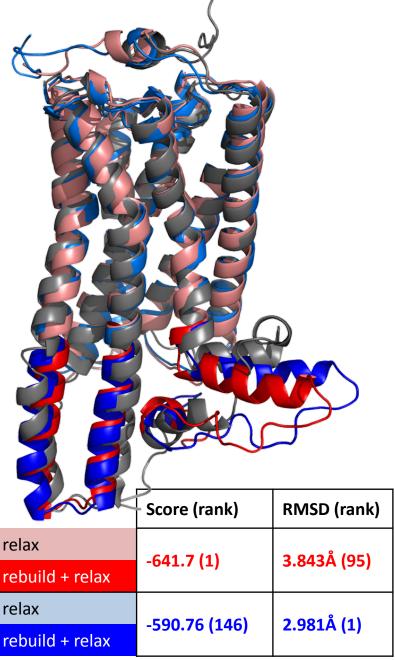

2. low sequence identity between GPCR classes (<20%)

-> couple modeling with experimental studies

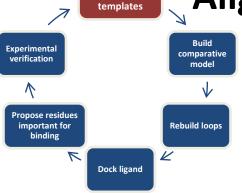
Iterative comparative modeling with experimental validation

Iterative comparative modeling with experimental validation

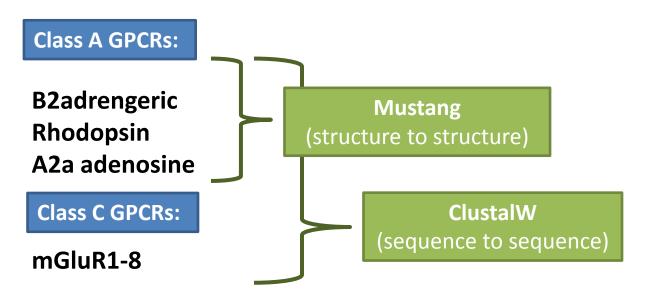

Topology Broker can be used to rebuild flexible regions


Benchmarking Topology Broker with Squid Rhodopsin:

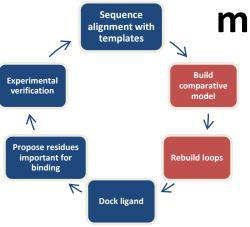
-Constrain *ab initio* folding protocol with claimers to define membrane topology & adjust weights accordingly


-Rebuild intracellular helical region between TM 5 & 6 and C-terminus

-Perform membrane relax on the center of the 2 largest clusters

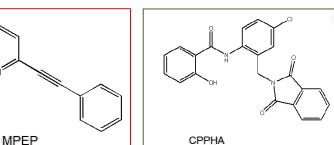


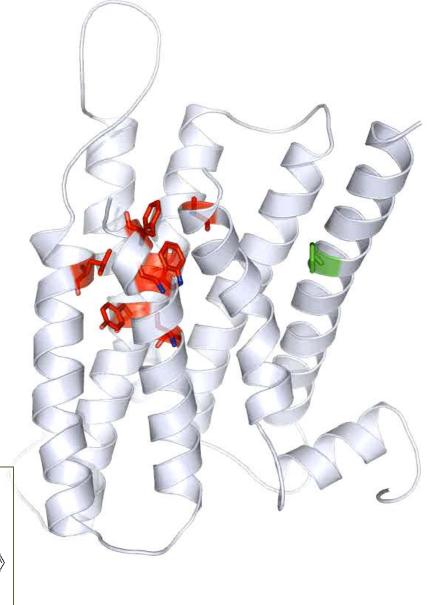
Align mGlu5 sequence with GPCR templates

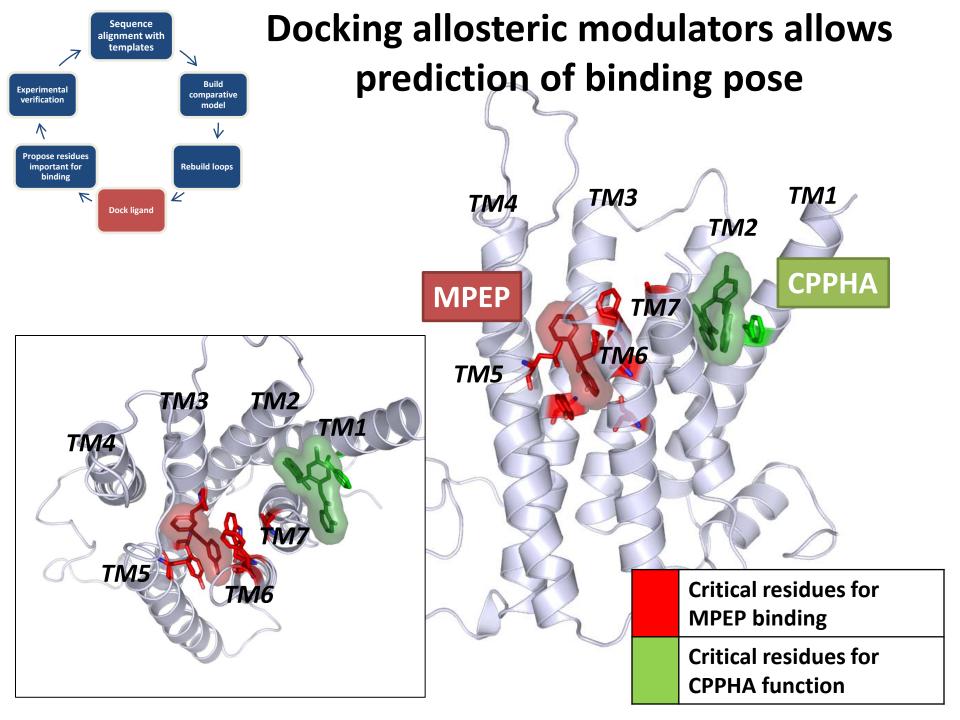

Sequence

alignment with

Transmembrane Span 7

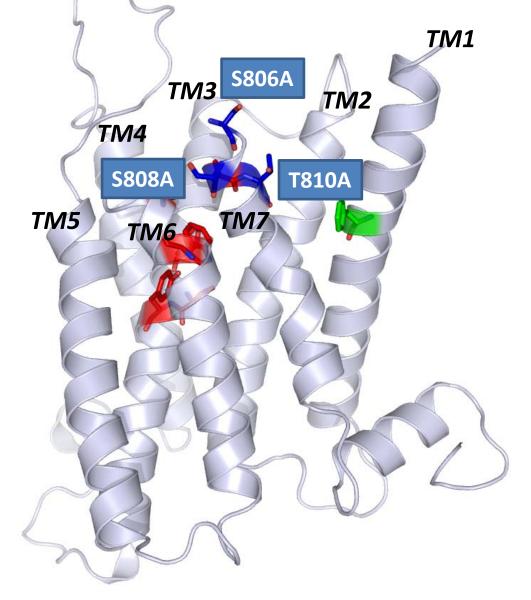

original	mGluR5	Y K I I T M C F S V S L S A T V A L G C M F V P K V Y I I	825
	mGluR1	Y K I I T T C F A V S L S V T V A L G C M F T P K M Y I I	838
alignment	b2adrenergic (2RH1)	K E V Y I L L N W I G Y V N S G F N P L I Y C R S P . D F	300
	rhodopsin (1U19)	P I F M T I P A F F A K T S A V Y N P V I Y I M M N K Q F	313
new	mGluR5	M C F S V S L S A T V A L G C M F V P K V Y I I	825
	mGluR1	T C F A V S L S V T V A L G C M F T P K M Y I I	838
alignment	b2adrenergic (2RH1)	K E V Y I L L N W I G Y V N S G F N P L I Y C R	296
	rhodopsin (1U19)	P I F M T I P A F F A K T S A V Y N P V I Y I M	308

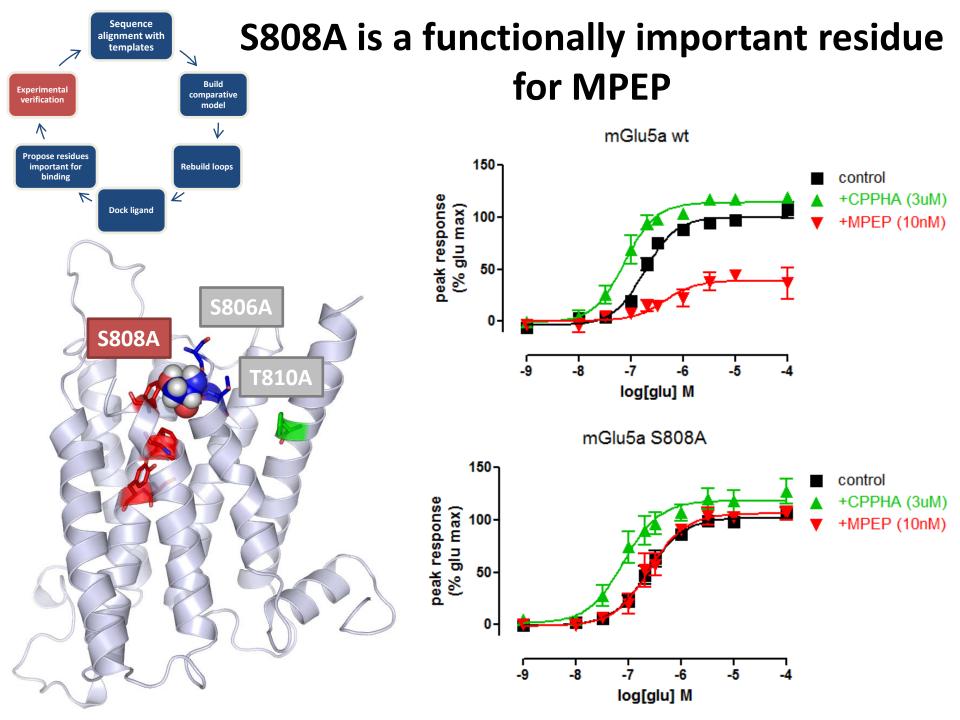

Critical residues for MPEP binding:


TM3: P654, S657, Y658 TM6: W784, F787 TM7: A809

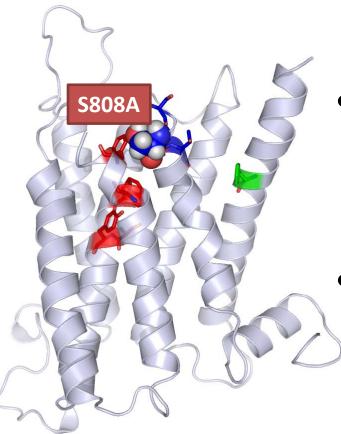
Critical residues for CPPHA function: *TM1: F585*

mGlu5 model clusters important residues into a common binding site


Sequence alignment with templates Build Experimental comparative verification model $\sqrt{}$ Propose residues important for **Rebuild loops** binding 7 $\boldsymbol{arsigma}$ Dock ligand


Goal of experimental validation: -verify orientation of TM7 resulting from PxxY alignment

Critical residues for MPEP binding
Critical residues for CPPHA
function


Residues proposed for sitedirected mutagenesis

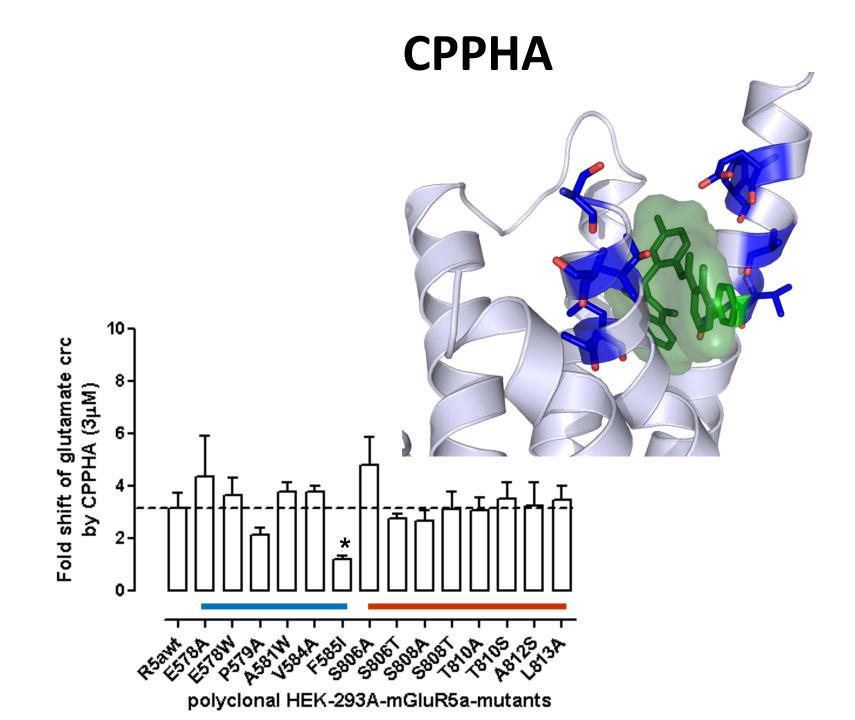
Site-directed mutagenesis studies validate helical orientation

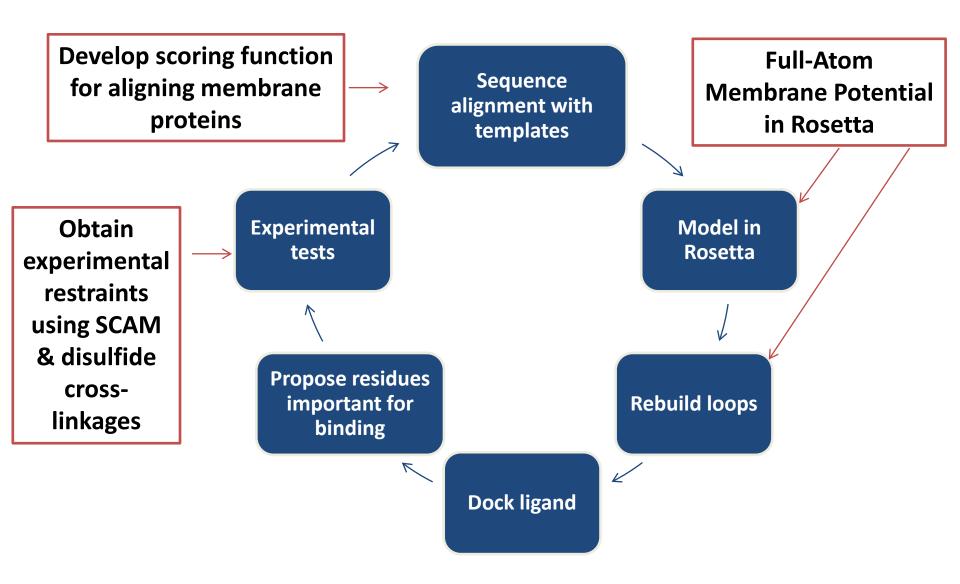
Conclusions

- Topology Broker in Rosetta can be used to rebuild flexible regions of a membrane protein
- Experimental verification is valuable and necessary for building comparative models of GPCRs

Acknowledgements

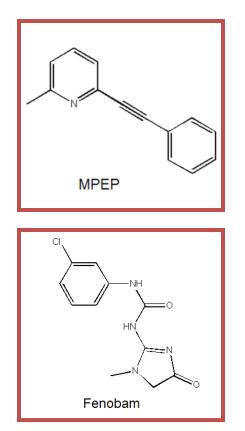
Jens Meiler


Kristian Kaufmann Anette Schreiber Stephanie Hirst Meiler Lab Jeff Conn Karen Gregory Alexis Hammond Eric Dawson Yifan Song Vladimir Yarov-Yarovoy

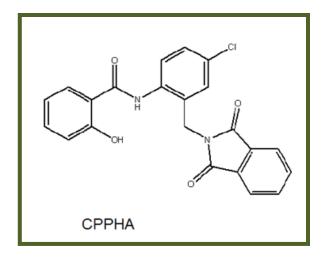


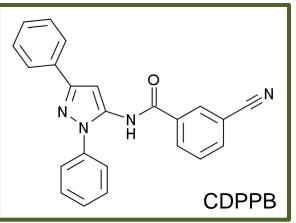
Funding

T32 GM07347 from the NIGMS for the Vanderbilt Medical-Scientist Training Program


Future Directions

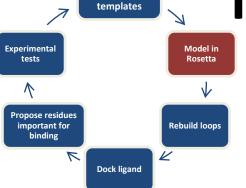
Allosteric modulators of mGlu₅ have therapeutic value


mGluR5 NAMs:

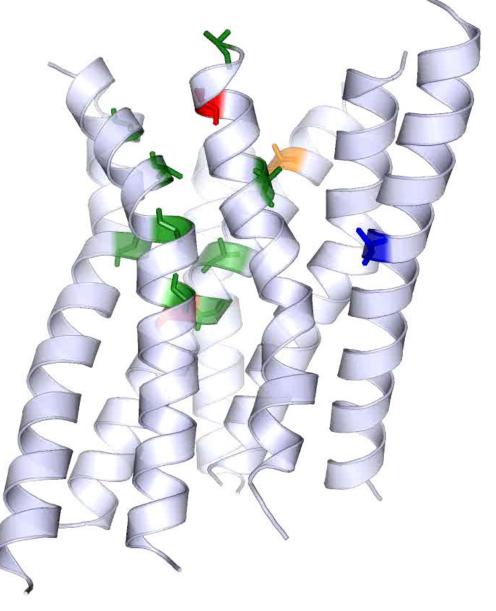

Anxiety, Fragile X Syndrome, chronic pain, depression, migraine, Parkinson's disease levodopa-induced dyskinesia

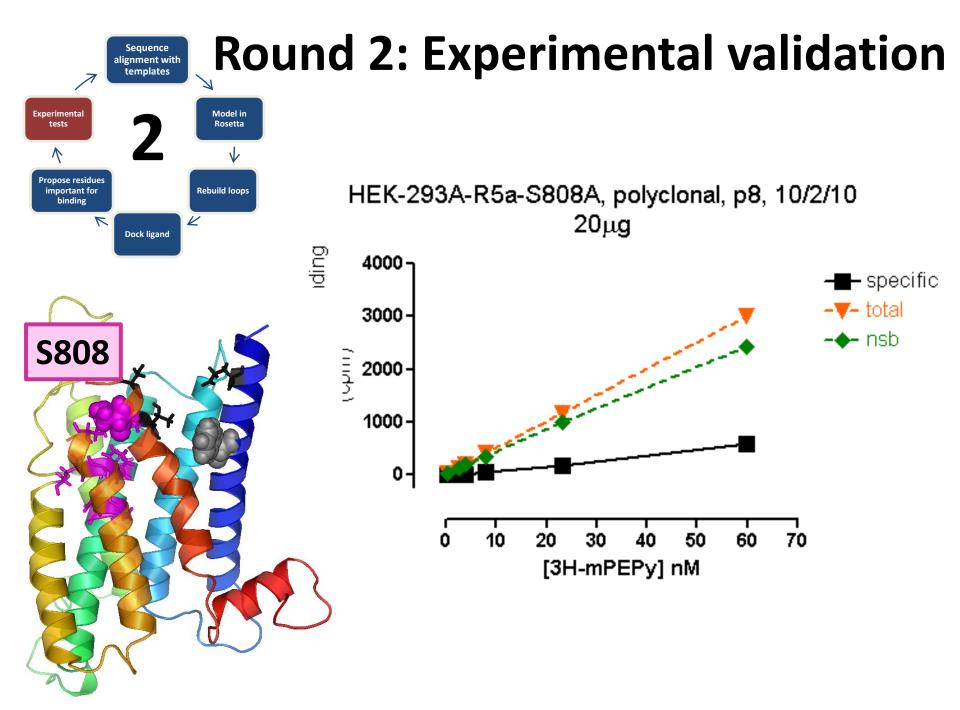
mGluR5 PAMs:

Schizophrenia, cognition disorders

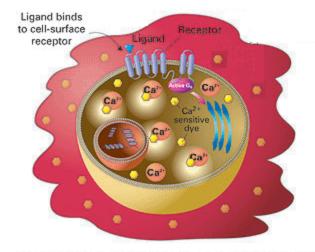


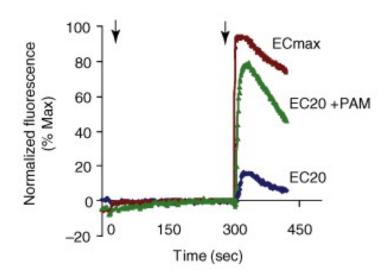
Current treatments for schizophrenia have negative side effects


- *Chlorpromazine*: painful twisting and contractions of muscles
- Haloperidol: high incidence of permanent tardive dyskinesia, especially in females over 45 years old (repetitive, involuntary, purposeless movements - grimacing, tongue protrusion, lip smacking, puckering and pursing of the lips, and rapid eye blinking)
- Aripiprazole (Abilify): weight gain of 2.2 lbs a year, hyperglycemia could lead to coma/death

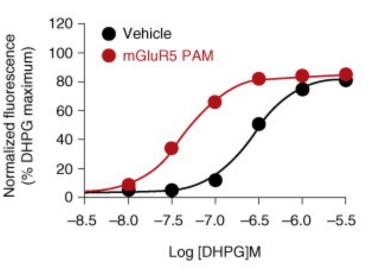

Initial Comparative Model

Sequence alignment with

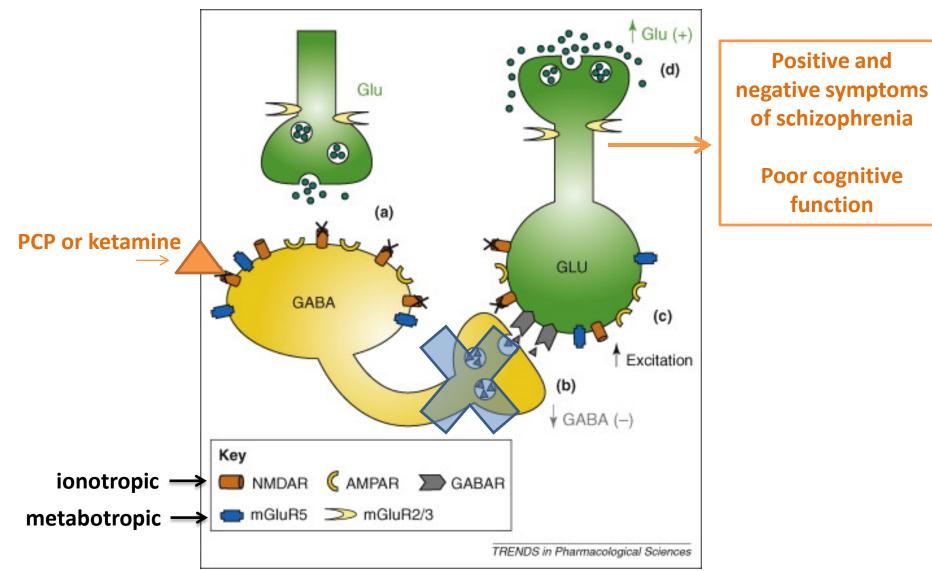

MPEP Binding
MPEP function
CPPHA function



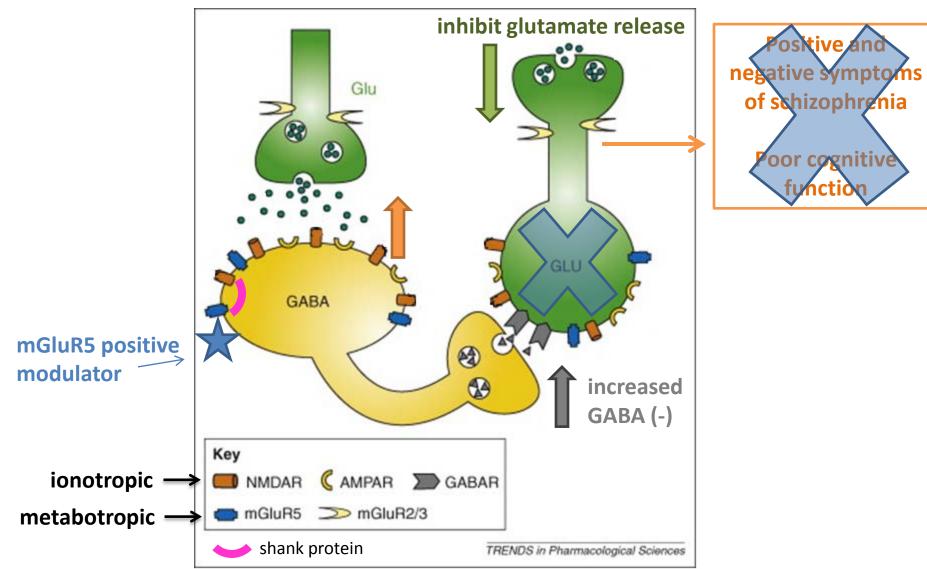
Using calcium mobilization as a functional assay


- 1. Transfect cells with wild-type or mutant mGluR5 complementary DNA
- 2. Load cells with calcium-sensitive dye
- 3. Add allosteric modulators
- 4. Add glutamate
- 5. Record peak calcium response to glutamate
- 6. Normalize to maximum response elicited by supra-maximal dose of glutamate (100 μM)

Increase in cytosolic Ca²⁺ can be detected by FLIPR or FlexStation microplate readers using calcium-sensitive dye indicators



Conn, P. J. et al (2009). *Trends in Pharmacological Sciences*, 30(1), 25-31.



http://www.moleculardevices.com/pages/reagents/cal4_kit.html

NMDA antagonists produce symptoms of schizophrenia

Activating mGluR5 can reduce symptoms of schizophrenia

	TM																									7	TM2																					
mGluR5 mGluR1		Y Y											A C S C				A V	T L T L	F F	т v v т	V L	V F				03 16	Š	S G	RE	EL	CY		_	GI GV	F				; P 1 T	FI			A K A K		Т. S.	65 62	28	
b2adrenergic (2RH1) rhodopsin (1U19)		D	ΕV	w	v	ve	ЭM	G	١V	/ м	sι		VL	A	1 \	/ F						A I V T	IA	ĸĸ		60 64	S S S S S S S S	G G G G G G N	R E R E R E R E	E L E L E L	CY SY SY SY SY SY		A A T T T	G V G I G I G I G I G I S L			Y Y Y Y Y Y Y	AI	T T T	FFU FU FU FU FU	M		A	P P P P P	G. D. D.	63 64 64 65 64 67	48 40 46 51 44	
																																						A V G C					А Н Y Т	I I S	L M L H	-	96 20	
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR6 mGluR7 mGluR8 CaSR	T A P \ L C Q I A A V A T I	S V I T Y V V I	00000000	T L S L S A F F	R R Q R R R	R R R R R R R	L G I F I G F V F V F		G G G G G G G G	TA SS LG LS LG LG	F M P T M	S V S I S M L C F	C S S S S		A A A A A A A	L L L L L V L L L L	T T T T T T	К Т К Т К Т К Т		R C R R R R R	Y A Y Y H		L F F L F F F	F E F E F E F E	687 662 671 682 674 680 685 678 707		C T A T T	SLLFFFSF	AL GL SL SL SL SL T	S C S C S C S C S V S V S V	L L I V L G V V L L L L	M G G G G	V V V S I C I V	A V V A A I V	W L W F L F W L W F	V V V G G V	M V L V M A V V T	A P P P P		à T I S	G R V M V I I	733 706 715 726 720 724 729 722 751					
b2adrenergic (2RH1) rhodopsin (1U19)																						ΎF		I T V C	136 140	E	ΞN				II GV							S F A A			Q V							
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR6 mGluR7 mGluR8 CaSR		5			S S S G S Q S	M L V L	L C T C C	S S L P C S S		AY TY GY GY GY GY	S	V L V L G L L L		IL IV IV IV	L L T S T T T	C T C T C T C T C T C T C T C F		Y A Y A Y A Y A Y A Y A Y A F A		<u> </u>		K R G R G R G	C F V F V F V F V F	P . P . P . P . P .	778 753 762 778 765 776 781 774 798		TM6 A N N E N T N E N T N E N T N E N T N	F F F F F		A A A A A	K K K K K K K K K F F F F F F F F F F F	A F F F F F F F F F	т Т Т	MY MY	УТ УТ	T 0 T 0 T 0 T 0 T 0 T 0 T 0 F F				A A F A F A F A F A F A F S F	÷ i	P P P P P P P P P P		F (F (F (F (G T G T G T	S S S N A A A	S 7 S 7 Q 8	794 310 796 308 313 330
b2adrenergic (2RH1) rhodopsin (1U19)											P P				F F										230 234													C V C V				-		-	V H Y I	-		
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR6 mGluR7 mGluR8 CaSR		F V F V I V	S \ S \ S \ S S S M S M		L L L L L	S S S S S S S S S S S S S S S S S S S	AS AT AS AS	V V V V V V	S A S A S	L G L G L G L G		L Y I F L Y L Y L Y	T F A F M F V F M F M F		M L V V V V V V I	Y I Y I	Ť.	838 817 826 845 845 843 843 848 841 860																														
b2adrenergic (2RH1) rhodopsin (1U19)					L P			G A			S (A		n f N f	_	I I	Y C Y I		296 308																														