## An Enumerative Ansatz for RNA and Protein Modeling

Rhiju Das
Aug. 4, 2010
RosettaCon!

|  | G9 | A8 | A7 | C6 | G5 | C4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C4 |  | $\rightarrow$ |  | $\rightarrow$ |  |  |
| G5 |  |  |  |  |  |  |
| C6 |  |  |  | $\rightarrow$ |  |  |
| A7 |  |  |  |  |  |  |
| A8 | $\downarrow$ |  |  |  |  |  |
| G9 |  |  |  |  |  |  |

## De novo modeling: connections to the real world




Accelerating \& enabling NMR structural inference...


This stuff doesn't always work

Engineering new protein folds and new enzymes

## Macromolecule structure at atomic resolution

1. Three flaws in our sampling approaches
2. Little RNA puzzles
3. Little protein puzzles

## Can you pick out the right one?



T304 (CASP7)

## Can you pick out the right one?



Crystallographic model


Best CASP model

## Can you pick out the right one?



Crystallographic model


Best CASP model

## The state of de novo structure prediction



The standard ROSETTA routine. SEE ALSO: Work by David Jones, Skolnick \& Zhang (TASSER), others

## A StepWise Ansatz for 3D modeling



Parin Sripakdeevong

## Step-by-step sampling

This sequence forms a highly stereotyped fold*. What is it?


## Conformation of a single nucleotide

- Assume ideal bond length and bond angles
- 7 torsional degree of freedom

- ( $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, x)$

Q: How many unique conformations?


## Conformation of a single nucleotide

- Assume ideal bond length and bond angles
- 7 torsional degree of freedom

- ( $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, x)$

Q: How many unique conformations?
A: Depends on how fine you cluster:

| all-atom rmsd cluster <br> size $(\AA)$ | \# Unique Conformations |
| :---: | :---: |
| 3.0 | $\sim 100$ |
| 2.0 | $\sim 1000$ |
| 1.5 | $\sim 10,000$ |
| 1.0 | $\sim 100,000$ |



Levinthal-style: The conformational space is

| huge! |
| :---: |
| Typical RNA motif length |

A billion years to sample a tetraloop

## Step-by-step sampling

## C A

G $\quad \mathrm{A}$


## Step-by-step sampling

## G



## Step-by-step sampling




Aha - terms for:

- base stacking
- RNA torsional potential

Had been dialed down to zero. (A legacy of fragment assembly)

## Step-by-step sampling




Wait, there's still a cheat!
There are other pathways ( $2^{\mathrm{N}}$ total)

## How to sample all paths?

## Sequence alignment

451 KKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSNMGTAEGTARDL 500


501 ADIAMSKGFAPQVATLDS.HAGNLPREG..AVLIVTASYNGHPPDNAKQF 547 23 ARELADAGYEVDSRDAASVEAGGL.FEGFDLVLLGCSTTWGDDSIELQDDF 71

548 VDWLDQASADEVKGVRYSVFGGCGDKNWATTYQKVPAFIDETLAAKGAENI 597
72 :
598 AD. .RGEAD. . .ASDDFEGTYEEWREHMWSDVAAYFNLDIENSEDNKSTL 642 121 QDGLRIDGDPRAARDDIVGWAHDVRGAI.

## Ordering primers for PCR assembly for the least \$\$\$.

Nucleic acid $2^{\circ}$ structure


TTCTAATACGACTCACTATAGGCCAAAACAACGGAATTGCGGGAAAGGGGTCAACAGCCG->1
\||l|l|l|l|l|l|l|l|l| 71.8
2<-GCCCTTTCCCCAGTTGTCGGCAAGTCATGGTTCAGAGTCCCCTTTGAAACTCTACCG

## Dynamic programming: all pathways



Edge 2


## Dynamic programming: all pathways




Lowest Energy


Each point style represents a rebuild path

## What have we gained?



1. Does not use pieces of existing structures
2. Enumerative $\left[\mathrm{O}\left(\mathrm{N}^{2}\right)\right]$
3. Directly searches the all-atom representation.

## But we only search conformations reachable in a stepwise manner - this is the <br> Ansatz.

# Overall results 

| PDB | Length <br> (\# non-canonical nucleotides) | Motif Description | All-atom rmsd wrt to exp. structure ( $\AA$ )* |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Best RMSD Model | Lowest Energy Score Model |
| 1ZIH | 4 | GCAA tetraloop | 0.9 | 1.5 |
| 1F7Y | 4 | UUCG tetraloop | 1.0 | 3.4 |
| 2PN3 | 4 | 5'UU3'/5'UC3' mismatch in HCV IRES | 1.0 | 1.2 |
| 1L2X | 7 | Loop region of a Viral RNA Pseudoknot | 0.7 | 4.6 |
| 2R8S | 7 | Tetraloop Receptor (build receptor only) | 0.9 | 1.0 |
| 1Q9A | 9 | Bulged G-motif from the sarcin/ricin loop | 1.1 | 5.3 |
| 1LNT | 10 | Highly Conserved Internal Loop of SRP RNA | 1.2 | 1.7 |
| 354D | 10 | Purine rich region in the 5S rRNA Loop E motif | 0.8 | 1.1 |



A baby step, buṭ a blind one.


Just rebuilding the colored residues


## Initial validation



## A stepwise enumerative ansatz: next.



Metal ions, solvation, all that - fixing the energy function

## What about proteins?





A plethora of RNA aptamers.

$\mathrm{O}\left(\mathrm{N}^{4}\right)$

More complex motifs/RNAs

## Small protein puzzles



Sellers, Zhu, Zhao, Friesner, \& Jacobson 2008.

1ALC 34-41

See also: Rosetta fragment-based modeling (Rohl), with CCD (Wang), Monte Carlo Minimization with kinematic loop closure (Mandell et al.)

Stepwise enumerative ansatz for protein loops




## Loop modeling made easy?

| Loop | Accuracy |
| :--- | :--- |
| 1ALC 34-41 | $0.5 \AA$ |
| 1CLC 313-320 | $0.5 \AA$ |
| 1F46 64-75 | $0.6,1.9 \AA$ (equal score) |
| 3TGL 82-87 | $0.5 \AA$ |
| 2CI2 34-46 | $1-3 \AA$ |
| T0308 21-31 | $1.0 \AA$ |
| T0308 56-64 | $0.6 \AA$ |
| T0308 65-75 | $0.7 \AA$ |
| T0308 99-107 | $1 \AA$ |
| T0311 38-43 | $0.3 \AA$ |
| T0453 32-45 | $0.5-1.5 \AA$ |
| T0488 10-17 | $1 \AA$ |

Stepwise enumerative assembly

- extremely good at picking up "memory" imprinted outside loop
- extremely sensitive to any errors,
e.g. as occurs in homology modeling testing now in CASP9!
- Need "self-contained" de novo tests: mini-proteins?


Stepwise Enumeration
TrpZip

## SWTWENGKWTWK

## Mini-proteins: discrimination disaster

Trp cage: DAYAQWLKDGGPSSGRPPPS



A marine snail venom toxin: ECCNPACGRHYSC



Crystallographic model (1NOT)


Best score (step-wise assembly)

## A stepwise enumerative ansatz for macromolecules



RNA motifs


Protein loops


Ongoing: blind tests


Lower energies \& more parts of conformational space than fragment-assembly/refinement


## How about a 150 residue protein?



- Currently, takes 10,000 CPU-hours [400 cores, 1 master, 24 hours] for 26 residues.
- Assuming:
$\mathrm{O}\left(N^{2}\right)$ [no. steps]
$\mathrm{x} \mathrm{O}(N)$ [minimize takes longer] $\mathrm{x} \mathrm{O}(N)$ [more poses],
150 residue protein will require $\mathbf{1 0 0}$ million CPU-hours.
- Caveats:
(a) "single-residue steps" may not be appropriate.
(b) No. of poses in "thermal ensemble" may increase with N.
(c) Energy function issues...


## Thanks to:

- Parin Sripakdeevong [all the RNA stuff!]
- Ann Kladwang [tetraloop/receptor data]
- NSF BioX² cluster at Stanford; BurroughsWellcome foundation
- Rosetta community


## A previously impossible toy problem



## A previously impossible toy problem




## A previously impossible toy problem




# Chymotrypsin inhibitor (2ci2) 



## A more complex motif



## A more complex motif


1.09 Å heavy-atom RMSD from crystallographic model

## A more complex motif



1.09 Å heavy-atom RMSD from
crystallographic model

## A simple recipe - find the optimum



A simple recipe - find the optimum


The state of de novo structure prediction


The standard ROSETTA routine. SEE ALSO: Work by David Jones, Skolnick \& Zhang (TASSER), others

