An Enumerative Ansatz for RNA and Protein Modeling

Rhiju Das Aug. 4, 2010 RosettaCon!

De novo modeling: connections to the real world

Accelerating & enabling NMR structural inference...

The crystallographic phase problem

This stuff doesn't always work

Engineering new protein folds and new enzymes

Macromolecule structure at atomic resolution

- 1. Three flaws in our sampling approaches
- 1. Little RNA puzzles
- 3. Little protein puzzles

Can you pick out the right one?

Can you pick out the right one?

Crystallographic model

Best CASP model

T304 (CASP7)

Can you pick out the right one?

Crystallographic model

Best CASP model

T304 (CASP7)

The state of *de novo* structure prediction

The standard ROSETTA routine. SEE ALSO: Work by David Jones, Skolnick & Zhang (TASSER), others

A StepWise Ansatz for 3D modeling

Parin Sripakdeevong

This sequence forms a **highly** stereotyped fold*. What is it?

*NMR characterization, multiple crystal models in different helical contexts.

Conformation of a single nucleotide

- Assume ideal bond length and bond angles
- 7 torsional degree of freedom
 - (α, β, γ, δ, ε, ζ, χ)

Q: How many unique conformations?

Conformation of a single nucleotide

- Assume ideal bond length and bond angles
- 7 torsional degree of freedom
 - (α, β, γ, δ, ε, ζ, χ)

Q: How many unique conformations?

A: Depends on how fine you cluster:

all-atom rmsd cluster size (Å)	# Unique Conformations
3.0	~100
2.0	~1000
1.5	~10,000
1.0	~100,000

Levinthal-style: The conformational space is

	~	huge!		
			# Nucleotides	# Unique Conformations through exhaustive enumerations
			1	~10 ⁵
			2	~10 ¹⁰
/ I V I (/ I (/ I		/ / / / / / /	4	~10 ²⁰
Typical RNA r	motif lengt	h	→ 10	~10 ⁵⁰
	_		20	~10 ¹⁰⁰

A billion years to sample a tetraloop

Aha – terms for:

- base stacking
- RNA torsional potential

Had been dialed down to zero. (A legacy of fragment assembly)

Wait, there's still a cheat! There are other pathways (2^N total)

How to sample all paths?

Sequence alignment

 KKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSNMGTAEGTARDL :. : MPKALIVYGSTTGNTEYTAETI	
ADIAMSKGFAPQVATLDS.HAGNLPREGAVLIVTASYNGHPPDNAKQF 	
VDWLDQASADEVKGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENI :	
ADRGEADASDDFEGTYEEWREHMWSDVAAYFNLDIENSEDNKSTL : : . QDGLRIDGDPRAARDDIVGWAHDVRGAI	

Nucleic acid 2° structure

Electrophoretic trace alignment

Ordering primers for PCR assembly for the least \$\$\$.

GGGAAACTTTGAGATGGCCTTGCAAAGGGTATGGTAATAAGCTGACGGACATG->3

||||||||||||||||||| 58.3 4<-CATTATTCGACTGCCTGTACCAGGATTGGTGCGTCGGTC ||||||| GAGCCAB

Dynamic programming: all pathways

Dynamic programming: all pathways

Each point style represents a rebuild path

What have we gained?

- 1. Does not use pieces of existing structures
- 2. Enumerative [O(N²)]
- 3. Directly searches the all-atom representation.

But we only search conformations reachable in a stepwise manner – this is the *Ansatz*.

Overall results

PDB	Length (# non-canonical nucleotides)	Motif Description	All-atom rmsd wrt to exp. structure (Å)*	
			Best RMSD Model	Lowest Energy Score Model
1ZIH	4	GCAA tetraloop	0.9	1.5
1F7Y	4	UUCG tetraloop	1.0	3.4
2PN3	4	5'UU3'/5'UC3' mismatch in HCV IRES	1.0	1.2
1L2X	7	Loop region of a Viral RNA Pseudoknot	0.7	4.6
2R8S	7	Tetraloop Receptor (build receptor only)	0.9	1.0
1Q9A	9	Bulged G-motif from the sarcin/ricin loop	1.1	5.3
1LNT	10	Highly Conserved Internal Loop of SRP RNA	1.2	1.7
354D	10	Purine rich region in the 5S rRNA Loop E motif	0.8	1.1
*All-atom RMSD, excluding bulge nucleotides				

Initial validation

A stepwise enumerative ansatz: next.

Metal ions, solvation, all that – fixing the energy function

What about proteins?

A plethora of RNA aptamers.

More complex motifs/RNAs

Small protein puzzles

Sellers, Zhu, Zhao, Friesner, & Jacobson 2008. 1ALC 34–41

See also: Rosetta fragment-based modeling (Rohl), with CCD (Wang), Monte Carlo Minimization with kinematic loop closure (Mandell et al.)

Stepwise enumerative ansatz for protein loops

Pdb	Non-modeled factor(s)	Reconstruction rmsd (Å)
1f46	Crystal packing, Cis proline	2.5
Mandall Cautaina Kartanana 2000		

Mandell, Coutsias, Kortemme 2009

Pdb	Non-modeled factor(s)	Reconstruction rmsd (Å)
1f46	Crystal packing, Cis proline	2.5
Mandall Cautaiaa Kantanana 2000		

Mandell, Coutsias, Kortemme 2009

Loop modeling made easy?

Loop	Accuracy	
1ALC 34–41	0.5 Å	
1CLC 313–320	0.5 Å	
1F46 64–75	0.6, 1.9 Å (equal score)	ľ
3TGL 82–87	0.5 Å	
2CI2 34–46	1–3 Å	(
T0308 21–31	1.0 Å	1
T0308 56–64	0.6 Å	
T0308 65–75	0.7 Å	1
T0308 99–107	1 Å	
T0311 38–43	0.3 Å	
T0453 32–45	0.5–1.5 Å	
T0488 10-17	1 Å	

Stepwise enumerative assembly

- extremely good at picking up "memory" imprinted outside loop
- extremely sensitive to any *errors*,
 e.g. as occurs in homology modeling –
 testing now in CASP9!
- Need "self-contained" de novo tests: mini-proteins?

Mini-proteins: discrimination disaster

Trp cage: DAYAQWLKDGGPSSGRPPPS

A marine snail venom toxin: ECCNPACGRHYSC

How about a 150 residue protein?

- Currently, takes 10,000 CPU-hours [400 cores, 1 master, 24 hours] for 20 residues.
- Assuming:

 $O(N^2)$ [no. steps]

x O(N) [minimize takes longer] x O(N) [more poses],

150 residue protein will require **100 million CPU-hours**.

• Caveats:

- (a) "single-residue steps" may not be appropriate.
- (b) No. of poses in "thermal ensemble" may increase with N.
- (c) Energy function issues...

Thanks to:

- Parin Sripakdeevong [all the RNA stuff!]
- Ann Kladwang [tetraloop/receptor data]
- NSF BioX² cluster at Stanford; Burroughs-Wellcome foundation
- Rosetta community

A previously impossible toy problem

A previously impossible toy problem

A previously impossible toy problem

Chymotrypsin inhibitor (2ci2)

A more complex motif

A more complex motif

1.09 Å heavy-atom RMSD from crystallographic model

A more complex motif

1.09 Å heavy-atom RMSD from crystallographic model

A simple recipe – find the optimum

A simple recipe – find the optimum

The birth of computational structural biology

Michael Levitt

The state of *de novo* structure prediction

The standard ROSETTA routine. SEE ALSO: Work by David Jones, Skolnick & Zhang (TASSER), others