BINDING DECISIONS: PREDICTION OF PROTEIN/PEPTIDE INTERACTIONS

Joseph Crivelli Meiler Group

RosettaCon 08/05/2010 Background & motivation

Objective

- Develop and test a protocol that accurately predicts
 - binding and non-binding events
 - binding preferences

PDZ single point mutant dataset

- Tonikian et al., 2008 phage display data
- Human Erbin
 (ERBB2IP-1) PDZ
- 91 mutations at 10 interface positions
- Unique phage derived peptides:
 - 2975 heptapeptides
 - 2156 hexapeptides
 - 934 pentapeptides
 - 328 tetrapeptides

Protocol overview

- Generated 29,900 complexes from 92 domain and 325 tetrapeptide sequences
- Threaded sequences onto relaxed Erbin PDZ crystal holo structure template (1.25 Å)

Protocol overview

- Small dock moves (S.D. 0.3 Å, 3.0°)
- Repulsive weight increased from 12.5% to 100% Score12 value during iterative repack/minimize

Protocol overview

 $\Box \ \Delta \Delta G = \Delta G_{bound} - \Delta G_{unbound}$

 Interface residues repacked in the unbound state before scoring

Optimization of the $\Delta\Delta G$ function

 $\Delta \Delta G_{total} = w_{atr} \Delta \Delta G_{atr} + w_{rep} \Delta \Delta G_{rep} + w_{sol} \Delta \Delta G_{sol} + w_{hbond_bb_bb} \Delta \Delta G_{hbond_bb_bb} + w_{hbond_bb_sc} \Delta \Delta G_{hbond_bb_sc} + w_{hbond_sc_sc} \Delta \Delta G_{hbond_sc_sc}$

Complex	ΔΔ G _{atr}	∆∆ G _{rep}	ΔΔ G _{total}	Binds?
А	-60	12	-48	0
В	-60	13	-47	0
С	-44	7	-37	1
D	-42	7	-35	1

♥	♥	V

Complex	ΔΔ G _{atr}	∆∆ G _{rep}	ΔΔ G _{total}	Binds?
С	-22	14	-8	1
D	-21	14	-7	1
А	-30	24	-6	0
В	-30	26	-4	0

10-fold cross-validation analysis

- Partitioned set of 92 domains into 10 subsets
- □ $\Delta\Delta G$ function weights are optimized based on 9 of 10 subsets in a round-robin setup
- Weights are averaged over all 10 steps

Interaction prediction is 24% better than random

Optimized $\Delta\Delta G$ weights are stable

Scoring term	PDZ weight	Score12 weight
Lennard-Jones:		
attraction	0.228 ± 0.006	0.684
repulsion	0.125 ± 0.004	0.376
Solvation	0.294 ± 0.011	0.556
Hydrogen bonding:		
backbone-backbone	0.559 ± 0.034	1.000
backbone-side chain	0.258 ± 0.038	1.000
side chain-side chain	1.000 ± 0.031	0.940

*All weights are normalized

Comparing binding profiles

At peptide position k, given the number of bits of information b_k and a vector of amino acid frequencies v_k , the distance between an experimental and a computational profile is

$$D_k := \left\| b_k^{exp} \boldsymbol{v}_k^{exp} - b_k^{comp} \boldsymbol{v}_k^{comp} \right\|_2.$$

-1 & -2 positions are most accurately predicted

Best case scenario

Hydrophobes at 0 are often incorrectly predicted

For WT, promiscuity at -3 unclear

Independent test on a homologous domain

- Tonikian et al. (2008) phage display experiment on 54 wild type human PDZ domains
- Computational test case: CASK-1 PDZ
- Performed the interaction prediction protocol for 760 CASK PDZ protein/peptide complexes

Future directions

Expand & fine-tune the PDZ protocol

- Will repeat all experiments for 5, 6 and 7 amino acid peptide ligands
- Include peptide backbone flexibility while docking (FlexPepDock)
- Measure the impact of individual ROSETTA refinement steps (docking, repacking, minimization)
- □ Find the correlation between experimental and computational $\Delta\Delta G$ values

Future directions

Other systems with canonical binding modes

SH3-domain/PPII-helix

TPR-domain/peptide

Acknowledgements

FOUNDATION