Fast Relax...

.... and its uses.

Mike Tyka

Baker Lab

6th August 2009

Classic Relax

Fast Relax

Better Relax...

Average decoy energy

Case I: Homology Modelling – Template selection

Case 2: Energy Landscape Exploration

Homology Modelling: Outline for CASP9

Remapping of alignments

Original sequence alignment

Remap using structural alignment (Dali)

Remapping can improve alignments considerably.

Remapping can improve alignments considerably.

Choosing good alignments – quick CCD looprebuild and fast relax.

Why the fuzz ? Resampling!

Looprebuilding

Rebuilding from minimal core

Case 2: Energy Landscape Exploration

Generating Decoys from many different angles

In almost all cases, Rosetta's global energy minimum is v. close to the native state

2) In almost all cases there are small deviations.

Disorder is very commonly observed

Rosetta Ensemble

NMR ensemble

Deviations correlate with contact density

Small deviations tend to correlate with B-Factor

llou

Rosetta Variance

Xtal B-factors

Deviations correlate with xtal contacts

Examples: Crystal contacts ?

IDHN

IYNV

Examples: Crystal contacts ?

Ibkr

Deviation

Deviation2

2hng

Dimer contact prevents alternative conformation

l fna

Systematic deviation:

Ifkb - Native

Ifkj - 100% Homologue in different crystal

Ifkb vs rosetta model

8) Rosetta gets it wrong also - a high accuracy metric for improving the e-function

Acknowledgements

- Oliver Lange, James Thompson, David Kim, Andrew Leaver-Fay, Grishin Lab
- Daniel Keedy, Yifan Song, Ingemar Andre, Andrew Leaver-Fay, Jane Richardson, Spencer Blivens, Liz Kellogg
- David B & Baker Lab