

Impact and background

- Impact:
 - Utilize nature's uncanny ability to synthesize materials at physiological conditions and with nanoscale precision
 - Understand sequence determinants in hard tissue formation
- Design of biomineralization systems to date:
 - Current attempts rely on modifying naturally evolved biomineralization proteins or using directed evolution techniques to evolve material binders *in vitro*.
 - One group extrapolated sequence data from directed evolution studies to predict novel material binders
 - Currently no method of *de novo* design

Choosing the mineral and face

Scanning electron micrograph of native calcite crystal

Sketch of almost mature, growing calcite crystal

Choosing the surface termination

Calcite {001} surfaces with different net charge

The RosettaSurface protocol

• RosettaSurface

- Can fold a protein on a biomineral surface beginning from a fully extended peptide chain. Simultaneously optimizes side-chain, backbone, and rigid-body positions.
- RosettaSurface.NMR
 - The structure of biomineral-bound proteins cannot be determined experimentally. RosettaSurface.NMR can be combined with minimal NMR constraints to predict reasonably accurate structures of biomineral bound proteins.
- RosettaSurface.Design
 - Only method of *de novo* design in protein biomineralization

Choose sequences and synthesize

Number	Design Sequence	Scrambled Variant	Net Charge
1	GEAEGEEAAAGE GGAY	EGGAAGAEAEEGAEGY	-5
2	GEEAADA AGA <mark>EE</mark> AGAY	AAAAGA<mark>E</mark>GEGAA<mark>EED</mark>Y	-5
3	AKAPK <mark>D</mark> GRAKEGGAAY	AAGP<mark>D</mark>AKKARGG<mark>E</mark>AKY	+2
4	GAAAAARKA <mark>E</mark> KGAKAY	AARGKGAAA <mark>E</mark> KAKAAY	+3
5	APP <mark>RAKAAK</mark> AAAAGKY	AAAKAPAAGKPKARAY	+4
6	GPPPPAKAAKKAAKK Y	AKAPKKAPPGAAKKP Y	+5

Sequence one

DesignOne: **GEAEGEEAAAGEGGAY** Net Charge -5 VariantOne: EGGAAGAEAEEGAEGY 1μm 2µm CaCO₃

2µm 4μm

Reference crystal

Sequence two

Sequence three

-5μm

Sequence four

Sequence five

Sequence six

Challenges

- Many mineral-surface conformers present during mineral crystallization
 - These include transiently amorphous states
 - The structure and chemistry of these states are very similar
- Relating gross crystal morphology observed in SEM's to the atomistic data predicted by RosettaSurface.Design

Improved strategies for RosettaSurface.Design implementation?

- Consider solution state
 - Some scrambled variants were predicted, by RosettaSurface, to have lower binding energy than corresponding designs
- Design of a stable, structured protein binding domain may increase specificity.
 - Increased size
 - Add disulfide bond