
Outstanding Hurdles

Andrew Leaver-Fay

+110K lines

in utility,

numeric, &

ObjexxFCL

RC’08

Outstanding Hurdles

• Missing R++ functionality
– rtmin, wobble & chuck

• Library subdivision

• Allow EnergyMethods outside core/

• Documentation

• Selection Syntax

• Protocol Integration

• Testing

API Improvement

• Theorem:
The command line is a poor place to
script

• Proof:
By Reductio ad absurdum.

Assume the comamnd line is a good
place to script,

Design a Protein/Protein

Interface to bind a Ligand

A

B

L

Design a Protein/Protein

Interface to bind a Ligand

A

B

L

for i = 1:nstruct

 dock L to A

 for j = 1:10

 dock B to AL

 design ALB interface

 minimize ALB jumps + sc

Design a Protein/Protein

Interface to bind a Ligand

A

B

L

for i = 1:nstruct

 dock L to A

 for j = 1:10

 dock B to AL

 design ALB interface

 minimize ALB jumps + sc

Assumption: the command line is a good place to script.

Two different docking runs (AL, BAL) read the same flags
 The command line is a poor place to script

Design a Protein/Protein

Interface to bind a Ligand

A

B

L

for i = 1:nstruct

 dock L to A

 for j = 1:10

 dock B to AL

 design ALB interface

 minimize ALB jumps + sc

Alt#1: B is fixed in sequence Alt#2: A has flexible loops

Alt#3: L is designable Alt#4: A’s loop lengths can vary

Alt#5: Favor native seq for A Alt#6: minimize N designs

Alt#7: Filter each i, each j

Design a Protein/Protein

Interface to bind a Ligand

A

B

L

for i = 1:nstruct

 dock L to A

 for j = 1:10

 dock B to AL

 design ALB interface

 minimize ALB jumps + sc

Complications:

• Kinematic topology changes

• Sequence length might change

• Score function might change

Design a Protein/Protein

Interface to bind a Ligand

A

B

L

for i = 1:nstruct

 dock L to A

 for j = 1:10

 dock B to AL

 design ALB interface

 minimize ALB jumps + sc

Complications:

• Kinematic topology changes

• Sequence length might change

• Score function might change

Design a Protein/Protein

Interface to bind a Ligand

A

B

L

for i = 1:nstruct

 dock L to A

 for j = 1:10

 dock B to AL

 design ALB interface

 minimize ALB jumps + sc

Complications:

• Kinematic topology changes

• Sequence length might change

• Score function might change

API Example: MatcherTask

• match.cc only reads the command line

• initialize_from_command_line()
– Reads all matcher flags

– Does not have to be called

– Can be called and overwritten (not commutative)

• Every flag has a corresponding data member,
accessor, and mutator

• Task is passed around to many different
classes during Matcher initialization

Testing

• Unit Tests Rock
– Will catch bugs integration tests miss

– Guarantee code is working correctly
• No wasted production runs with buggy code

– Speed code development
• Find bugs early

• Pinpoints bugs!

• 180 core/ tests, 130 protocols/ tests, need
10x more

Testing

• Two challenges in writing unit tests

1. Adding a new test to the test framework

2. Deciding under what conditions your

code is operating correctly

Testing

• Two challenges in writing unit tests

1. Adding a new test to the test framework

– Insultingly easy

2. Deciding under what conditions your

code is operating correctly

– Hard, but essential

Testing
• E.g. test/protocols/match/BumpGrid.cxxtest.hh

class BumpGridTests : public CxxTest::TestSuite {

private:

numeric::geometry::BoundingBox< core::Vector > bb_, bb2_;

public:

void setUp() {

/// next slide

}

void test_bool3D_or_overlap() {

/// slide after next

}

};

Testing

• Development workflow
– Sketch out your classes

– Starting with central classes

• Start implementing class C

– Write part of class C

– Compile class C

– Write a unit test, run, debug

– Repeat

• Run unit tests for all classes

• Development is faster & afterwards, tests
persist!

Acknowledgements

• Sarel: Parser

• Andrew Ban: Observers

• Oliver Lange: TopologyBroker

• Ron Jacak, Sergey Lyskov: Unit Test

Framework

• David Baker

