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Mutations can alter the free-energy landscape, changing
free energy of folding
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Why use computational techniques to predict AAGs?

Understand relationship between protein structure and its
energy
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Previous computational algorithms for estimating
changes in stability
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A large set of mutations has been gathered to aid method

development
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The previously published AAG algorithm is not
general enough to handle all types of mutations
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Side-chain optimization and averaging energies improve

predictions
R =0.65
Input starting structure.
Introduce mutation here
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AG, free energy of folding

Red = large-to-small predicted

Blue = small-to-large
Green = isosteric



Introduction of minimization improves correlation
further

Input starting structure.
Introduce mutation here
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However, perhaps we could improve predictions if we
allow more relaxation for non-conservative mutations

Left: FK506 binding protein W59L 9
Right: T4-lysozyme F153A



An aggressive backbone protocol produces uniform variation
across the length of the protein

nput starting structure.
Introduce mutation here

temperature

Sidechain optimization 10%

X 1000 Shear moves 45%

Small moves 45%

Drop MC trial to low
temperature and repeat

constraints and minimize
backbone and sidechain

dG, free energy of folding

Superposition of wild-type
ensemble of T4-lysozyme
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By allowing backbone changes, we recapitulate the
backbone shift upon mutation

1y Red fixed backbone mutant

7" prediction

Blue mutant structure

_ ' Yellow-green flexible backbone
T4-lysozyme A153F mutant L@ﬁ’@@ﬂﬁ@ﬁ@lﬁ



Correlation improves with increasing ensemble size

correlation with experimental data as a function of ensemble size
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The minimization protocol performs the best of the
four protocols in all size categories
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To allow the structure to locally relax, we loosen constraints around
the site of mutation

Input starting structure.
Introduce mutation here

Optimize sidechain X 20

rotamer conformations

Apply C-ox constraints constraints
(all atoms <9 A) around site
B of mutation

Backbone and sidechain
minimize

Take minimum energy
structure

Red = large-to-small

Blue = small-to-large
AG, free energy of folding |el S pprE

New constraint strategy:
* Define neighborhood of
mutation site as any
sidechain center of mass
lying within 8 Angstrom
of mutant residue

« All constraints to any of
these neighborhood
residues are loosened

 All other residues have
a harmonic constraint

with standard deviation of
0.5
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Loosening constraints improves modeling accuracy for
buried small-to-large mutations

Tight - > Loose
constraints constraints

1.5

all-atom rmsd of mutant residue
1.0

0.5
1

| | | | | | |
uniform csts 0.8 1 2 5 10 10

varying levels of constraint around mutation site

Buried small to large mutations (n = 11). All-atom rmsd of mutant residue
calculated after optimal C-alpha superposition with mutant crystal structure



In some cases, loosening constraints around the site of
mutation dramatically improves modeling results
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Predicted ddg uniform constraints: 1.132
Predicted ddg loose-local constraints: -2.352
Experimentally determined value: -2.6 kcal/mol

] Starting
structure

B Mutant
crystal
structure

" Min with
uniform
constraints

N Minimization
with loose-
local
constraints

16



In some cases, modeling accuracy is improved slightly

] Starting
structure

B Mutant
crystal
structure

" Min with
uniform
constraints

E . Minimization

\ with loose-
local
constraints

Predicted ddg uniform constraints: -2.331
Predicted ddg loose-local constraints: -3.67
Experimental ddg: -3.8 kcal/mol 17



An independent assessment of computational ddg algorithms
ranks rosetta as the poorest performing algorithm

o028 . g .
sl V= 0.46fg + 1 of :’ /// ‘ Method r n outliers
By R P CC/PBSA 0.56 478
10} cer Vor, 7 ‘ EGAD 0.59 1065 1091
ol FoldX 0.50 1200
Predicted AAG Hunter 0.45 1594

I-Mutant2.0 0.54 933
Rosetta (.26 1913 243

10

Experimental AAG

Used fixed backbone design, All residues within 5 A of mutation
allowed to repack. Input structures were idealized and minimized.

Potapov et al. “Assessing computational methods for predicting protein
stability upon mutation: good on average but not in the details” PEDS 2009



experimental

On an independent benchmark the best method ranks on par with

10

all other methods

Method r n outliers
CC/PBSA 0.56 478 -
. EGAD 0.59 1065 1091
FoldX 0.50 1200
Hunter 0.45 1594
¢ I-Mutant2.0 0.54 933

predicted

Potapov et al. “Assessing computational methods for predictiflg protein
stability upon mutation: good on average but not in the details” PEDS 2009



The maximum correlation we can expect to achieve 1s around
r =0.86
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n = 406 mutations

Potapov et al. “Assessing computational methods for predicting protein
stability upon mutation: good on average but not in the details” PEDS 2009



Optimizing weights show that maximum correlation possible 1s 0.74,
matching the results produced by other algorithms

Minimize f, where f = E AAG,, v imentar = EW AE; + Aref,
J

mutation i=1...N
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Conclusions/Future work

Protocol adjustments without weight optimization 1s
sufficient to produce a 0.67 correlation on a comprehensive
set of 1,287 mutations.

Further weight optimization can increase correlation with
experimental data to 0.74

Judicial choice of constraints can increase accuracy of
predicting mutant sidechain conformations

Future Work:

Cross-validation of weight optimization
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And 1n other cases, loosening constraints around the
site of mutation does not increase modeling accuracy

1
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outline

Data-set: curation
Fixed bb results

Flexible bb results
— Backrub (make slides but put at end in case anyone asks)
- Ensembles (don’t talk about this?)
- Minimization
- Local minimization
Energetic results

Structural results: tying energy and structure together?
- In some cases we can predict significant backbone changes very well
— In other cases, our energy function is unable to guide sampling to the correct answer, and does not predict the ddg as well

An independent test:
— Introduce potapov set, explain results
- Show results of running algorithm on this set

Opte results: what is the upper limit for our combination of scoring and sampling?



As well as lower rmsd predictions
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Examining wt and mutant crystal structures show that most of the time
structures essentially stay the same, but also can change significantly
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correlation

Mutations involving polar or charged residues are
predicted less accurately
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Buried residues are predicted more accurately
than exposed residues
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Mutations involving only non-polar residues are predicted
more accurately than those involving polar or charged
residues
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Structural changes upon mutation are not well
understood or predicted

Often mutations cause no structural changes at
all

However, mutations can cause large backbone
shifts and structural re-arrangements

Most mutations affect the local conformation of
the protein structure

An experimental “CASP” for small sequence
changes was held 1n October 2007 to assess the
current state of the art.

Xu, Baase, Baldwin et al. Protein Sci 1998 1:158-77
Eriksson, Baase, et al. J. Mol. Biol. 1993 3:747-69
Baldwin, Xu et al. J. Mol. Biol. 1996 3:542-59
Fulton et al. Biochemistry 2003 42: 2364-72
Cuneo, et al. BMC Struc Biol. 2008 8:20



Separation by solvent exposure shows that buried residues
are predicted accurately, but exposed residues are not.

0.7

0.5 -

. “ fixed
backbone
o3 © minimize
0o bb+sc
. structural
' ensembles
o
buried partially exposed exposed
# buried # partially exposed # exposed
fixed backbone 416 | 0.6054 | 415 0.6217 452 0.535
minimization 416 | 0.6587 | 415 0.6289 452 | 0.47111
structural ensembles | 171 | 0.5304 | 183 0.59489 232 | 0.39343
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Ddgs:
— Important for design

— Mutations measuring thermodynamic stability are time-consuming experiments, could use
computational to speed it up

What has been done (previous algorithms)
What was done previously in rosetta++ (and limitations of the algorithm)

New algorithm: fixed backbone allow sidechain optimization. Used different energy
function to reduce effect of steric clashes

This still doesn’t full reduce the effect of steric clashes
Then, introduce backbone and sidechain minimization

This works much better, but real mutations can cause large backbone shifts in
structure, and our minimization protocol would not capture this currently.

So introduce a new protocol which would randomly sample the structure space
surrounding the original structure very closely

Comparison of the three protocols side-by-side: minimization does the best out of
the three

But this isn’t the best we could do. In order to further increase our performance
we can optimize the weights

Furthermore, the weights indicate the best we could do with the current protocol
in the context of the current scorefunction. What can we do now to improve our
algorithm?

We could look at outliers and try to find systemic failures in our energy function.
What energy function issues have come up so far?

Observation that buried polar residues are usually predicted more stabilizing than
they actually are, and exposed are more destabilizing than they actually are

Also intra-residue hydrogen bonds
Electrostatics and the work you’ve done towards modeling through hackelec?



In some cases, we can accurately predict
mutations in one way, but not the other

e GGreen arrows:

T4-lysozyme(wildtype): y
e F*153 A
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>

experimental dd¢

e Blue arrows:

T4-lysozyme(mutant):
e A153 F*
e A121L*
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In some cases, we can accurately predict
mutations in one way, but not the other

e GGreen arrows:
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e L*121 A
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correlation
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Allowing more movement around the site of
mutation produces better energy predictions...

Loosest constraints

tightest constraints

correlation all large to small small to large
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Backrub protocol

Advantages:

* a local move that does not propagate
changes in the protein structure
* previously shown to recapitulate

! mutant sidechain conformations
— Colyya

Smith CA, Kortemme T. “Backrub-like backbone simulation recapitulates natural
protein conformational variability and improves mutant side-chain prediction.”
J Mol Biol. 2008 Jul 18;380(4):742-56.

37



Using a backrub ensemble can improve correlation
over using a single-structure fixed backbone protocol

experimental ddg

Ensemble of structures
generated using the
backrub protocol

predicted ddg
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The more decoys 1n the ensemble, the better the

correlation
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Correlation for individual proteins seems to generally
1mprove with inclusion of more decoys in the ensemble.
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Previous work in estimating ddgs using flexible
backbone protocols

Eris:
* Detected strain and relaxed dihedrals accordingly

* Trained reference weights to more closely match
experimental ddGs

 On a set of 595 mutations, pearson R = 0.66

CC/PBSA:
 Produced structural ensembles with distance
constraints and minimized with GROMACS
* Trained physics-based energy function based | g ree cnersy . -
on structural ensemble o] " A
 Pearson R = 0.75 over 582 mutations |

Benedix et al. “Prediction of Mutational Free Energy Changes Using Ensembles 21 - ~

of Structures”, Nature Methods.(2009) 6: 3-4 ' o= 1 éml kcol/mo
Yin et al. “Modeling Backbone Flexibility Improves Protein Stability Estimation” —  *———
Structure (2007)15: 1567-1576



Previous work 1n fixed backbone protocols

Foldx:

 Mutations modeled with WHATIF, energy

function based on physical terms was trained
on a set of 339 mutants with a pearson R =0.7

* On 625 single mutations a pearson R =0.73

Guerois R. et al. “Predicting Changes in the Stability of

Proteins and Protein Complexes: A Study of More Than
1000 Mutations”, JMB (2002): 320, 369-387



Previous work from the Baker Lab 1n estimating
ddgs using fixed backbone protocols

* Fixed backbone protocol, allow sidechain re-
arrangements

« {1t weights using monomeric protein alanine
scanning data

¢ 743 X-> A mutations In monomeric proteins with
pearson R =0.75

1,584 mutations X -> Y where Y 1s smaller or same
size as X ylelds pearson R =0.70

Kortemme T., and Baker D., “A Simple Physical Model
for Binding Energy Hot Spots in Protein-Protein
Complexes”, PNAS., 2002 (99)22:14116-14121



Separating mutations based on size differences shows that the
minimization protocol predicts non-conservative mutations best

0.70
0.65 —
0.60 — Hrosetta++
0.55 | —
& fixed
0.50 backbone
0.45 minimize
w/cst
0.40
0.35
small to large large to small  isosteric all
small to large large to small 1sosteric all
rosetta++ 0.40 0.57 0.41 0.56
fixed backbone 0.52 0.67 0.43 0.65

minimize w/cst 0.65 0.66 0.59 0.67
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Optimization of weights drastically improves correlation

2

Minimize f, where f= Y |AAG, o =| O, W AE; + Aref,
J

mutation i=1...N
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Number of 1983 1283 595 625 905 582 895

mutations
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