

Modeling Structures into Density Using Rosetta

Frank DiMaio Baker Lab RosettaCon 2009 dimaio@u.washington.edu

Electron Cryomicroscopy

Electron Cryomicroscopy

4.5Å Bacteriophage Epsilon 15

Outline

- Adding a fit-to-density energy function to Rosetta
- Comparative modeling into density
- Refining a low-resolution Cα-only model into density
- Density in Rosetta: A (very) brief user's guide
- Refining symmetric complexes into density

Scoring Structures With Density

- Use correlation coefficient between expected and observed density
- Low-resolution score places a single Gaussian at each Cα/heavyatom and computes masked correlation

- Very quick to compute
- Density not used in sidechain repacking

Scoring Structures With Density

- Use correlation coefficient between expected and observed density
- High-resolution score places a Gaussian at every heavy atom; scores computed in a sliding window

Scoring Structures With Density

 Given a correlation CC between map and model, fit-to-density energy based on probability of seeing that correlation by random chance

$$score_{density} = \log(0.5 \cdot (1 - \operatorname{erf}(Z_{CC})))$$

Comparative Modeling using Electron Density

Results on synthetic maps

		lowest-RMS starting	lowest- energy refined 5A	lowest RMS of 10 lowest-	lowest- energy refined 10A	lowest RMS of 10 lowest-
	nres	model	structures	energy (5A)	structures	energy (10A)
1bbh	127	2.48 / 3.41	1.76 / 2.47	1.60 / 2.31	2.31 / 2.98	1.78 / 2.57
1c2r	115	3.45 / 4.15	0.54 / 1.12	-	1.61 / 2.43	1.37 / 2.40
1cid	109	3.34 / 4.33	1.82 / 2.99	1.66 / 2.79	1.97 / 3.24	1.88 / 3.30
1dxt	143	2.02 / 2.78	0.50 / 1.14	-	1.12 / 1.88	-
1lga	279	3.16 / 3.77	2.27 / 2.83	-	2.40 / 3.07	2.24 / 2.91
1mup	152	3.49 / 4.47	2.19 / 3.25	1.35 / 2.68	2.67 / 3.77	1.99 / 3.23
1onc	101	2.23 / 2.97	0.81 / 1.92	0.53 / 1.47	1.31 / 2.09	1.09 / 1.91
2cmd	310	2.50 / 3.42	1.80 / 2.63	1.43 / 2.31	2.21 / 3.36	2.02 / 3.09

Results on synthetic maps

RDV upper domain at 6.8Å cryoEM data

Homology Template

• 5.6Å RMS

Rosetta prediction

• 3.7Å RMS

Native structure

Refining a $C\alpha$ only model

Rigid-body moves

Small backbone perturbations in strands

High-resolution GroEL model from 4.2Å cryoEM data

Initial Cα trace Rosetta prediction Native structure

High-resolution model of RDV from 6.8Å cryoEM data

Improving an autobuilt model in 4Å crystallographic data

- 1NSF autobuilt into density using data up to 4Å resolution
- Autobuilt model 1.12Å from native

1NSF at 4A

- Jumping ab initio
- Per-residue fit-to-density scores identified helices as well-resolved
 - Fix helices, introduce cuts
 - Fragment insertion outside of helices
 - Ramping chainbreak score
 - Density score (whole structure allatom) in final stage

with Oliver Lange

Improving an autobuilt model in 4Å crystallographic data

Autobuilt model

- 1.12Å RMS
- 85% Cα within 1Å of native

Rosetta prediction

- 0.88Å RMS
- 92% Cα within 1Å of native

Native structure

Phase improvement in 4Å crystallographic diffraction data

Three fit-to-density scoring functions

elec_dens_whole_structure_ca

elec_dens_whole_structure_allatom

- Score uses whole-structure masked correlation with density data
- Density computed using all heavyatoms / CAs only
- Score not used in repacking

elec_dens_window

- Score uses sum of sliding-window fit-to-densty scores computed for each residue
- Used in repacking; very slow

Using fit-to-density scoring from the command line

-edensity::mapfile gp7.mrc

- -edensity::mapreso 4.0
- -edensity::grid_spacing 2.0

Input map in CCP4/MRC format covering asymmetric unit. Compute rho_c using *mapreso* resolution, resampling map to *grid_spacing* per voxel.

-edensity::sliding_window_wt 0.5
-edensity::whole_structure_ca_wt 0.0
-edensity::whole_structure_allatom_wt 0.1
IF SUPPORTED BY THE PROTOCOL, set the weight on the three scoring functions.

Using fit-to-density scoring from the command line

Supported protocols

- score app
- relax
- Ioopmodel
- RBrelax
- CM
- ab initio (through the topology broker) density scores must be set through patches
- (viewer)
- Several density-specific protocols

Adding fit-to-density scoring to a protocol

protocols::electron_density::SetupForDensityScoringMover

- Ensures pose is rooted on VRT
- Uses -edensity::realign flag value to dock pose to dens map
- [OPTIONALLY] Use only a subset of residues to initially dock pose

core::scoring::electron_density::

add_dens_scores_from_cmdline_to_scorefxn(ScoreFunction&)

Uses values of -edensity::sliding_window_wt, -edensity::whole_structure_ca_wt and -edensity::whole_structure_allatom_wt to update score function

Refining Symmetric Complexes into Density

 Symmetric modeling code allows refinement of various symmetries

with Ingemar Andre

Refining Symmetric Complexes into Density

-symmetry::symmetry_definition

- Define the symmetric DOFs & master/slave subunits
- Typically generated by a script (see Doxygen!)

-edensity::score_symm_complex

- Score a symmetric pose's fit to density over the entire structure
- Maps asymmetric scores/derivatives to the master subunit
- Derivatives remapped at each symmetric DOF

with Ingemar Andre

MM-CPN

Docked Homology Model

Corr. (backbone): 0.43

Corr. (allatom): 0.31

Symmetrized

Corr. (backbone): 0.36 Corr. (allatom): 0.27

Rosetta prediction

Corr. (backbone): 0.71 Corr. (allatom): 0.54

Ongoing: Capsid modeling

Acknowledgements

- Baker Lab
 - Oliver Lange, Mike Tyka
 - Ingemar Andre
- NCMI (Baylor)
 - Wah Chiu
 - Matt Baker
 - Junjie Zhang