

Rhiju Das, Kyle Beauchamp, Parin Sripakdeevong

Stanford Biochemistry + Biophysics

RosettaCon, August 4, 2009

A flourishing RNA world

Goal: a predictive understanding of RNA self-assembly

A Rosetta tour through the RNA world

AGCU

Why RNA prediction should be easy

Fragment assembly and all that

Beating the "astronomical" conformational sampling problem

GACACUAAGUUCGGCA UCAAUAUGGUGACCUC CCGGGAGCGGGGGGACC ACCAGGUUGCCUAGAG GGGUGAACCGGCCCAG GUCGGAAACGGAGCAG GUCAAAACUCCCGUGC UGAUCAGUAGUGU

Signal Recognition Particle RNA Oubridge et al., 2002

Canonical double helices Non-canonical regions

- Modules <20 residues
- A four letter alphabet.

• Modules <20 residues

-**— G**

 $\mathbf{G} \bigcirc^{\mathsf{B}} \Box \mathbf{G}$

 $C \cap \Box A$

G

- A four letter alphabet.
- Stereotyped side-chain interactions (Leontis/Westhof classification)

De novo modeling

30 36	the wet the must
11 1.	they know must mark might
From H	the Les manuscrime
for XX	the the & my & mount
J. LA	the mismed
Y+ LA	the the manual
er va	marchine Emil 100
and B	the have taken be
S A La	the built of the state of
1	the the state of the state
ter of	A A A A A A A A A A A A A A A A A A A
ADD A	and marked a strend
34 months	when they was surveyed
San may	Stor while work marked
1. S.	where show we have
1 34	the trunk that the
1 120	adde that wanted and
Store 53	the party state the
Franking.	the first that they
Lor MA	the suit the mouth
June 25	the sit the mount
must 33	the must sold the
3.1 8	the south survey and
Som E	with white where where
In the	top him and survey
31 24	the test the second
\$1 33	the to my and

Fragment Assembly of RNA (FARNA)

Energy: Just maximize base pairs and base stacks.

Similar accuracies now achieved with other approaches: MC-SYM/MC-FOLD (Major + colleagues, 2008) Discrete Molecular dynamics (Dokholyan, 2008)

Low resolution modeling: OK up to a point

tRNA (phe), yeast

Low resolution modeling: OK up to a point

tRNA (phe), yeast

RMSD: 6.0 Å

directly homologous to the sarcin/ricin loop have been excised.

All-atom refinement for RNA?

The power of all-atom refinement

Native

Fragment assembly + all-atom refinement

RMSD over non-helical region: 1.4 Å (C4'); 1.6 Å (all atoms)

"Solving" the classic motifs

G = C A = O G = O NATIVE

Kink/turn motif

NATIVE

Hook/turn motif

"Solving" the classic motifs

De novo modeling

The biggest bottleneck: conformational sampling

De novo modeling

The biggest bottleneck: conformational sampling

A universal obsession

domains (<85 residues). The primary bottleneck to consistent high-resolution

prediction appears to be conformational sampling.

Toward High-Resolution de Novo Structure Prediction for Small Proteins

Philip Bradley, Kira M. S. Misura, David Baker*

generated during CASP8 Developing more effective conformational sampling algorithms and protocols is a critical area for current research in protein structure prediction.

Structure prediction for CASP8 with all-atom refinement using Rosetta

Srivatsan Raman,¹ Robert Vernon,¹ James Thompson,² Michael Tyka,¹ Ruslan Sadreyev,³ Jimin Pei,³ David Kim,¹ Elizabeth Kellogg,¹ Frank DiMaio,¹ Oliver Lange,¹ Lisa Kinch,³ Will Sheffler,² Bong-Hyun Kim,⁴ Rhiju Das,¹ Nick V. Grishin,^{3,4} and David Baker^{1,2,3*}

to the functional loop regions. However, despite progress in loop prediction methods^{1,2}, design applications are limited by the difficulty in modeling purely local conformational moves and by the need for advances in sampling and evaluating loop conformations.

Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling

Daniel J Mandell^{1,2}, Evangelos A Coutsias³ & Tanja Kortemme^{1,2,4}

Kyle Beauchamp – molecular dynamics prodigy

A Rosetta tour through the RNA world

 $A \longrightarrow U$ $A \longrightarrow G$ $G \bigcirc^{B} \Box G$ $C \bigcirc \Box A$ $A \longrightarrow C$ $G \bigcirc U$

Why RNA prediction should be easy

Achieving nearatomic accuracy Fragment assembly and all that

Beating the "astronomical" conformational sampling problem

Next up: blind predictions

Modeling a big RNA: the glycine riboswitch

structure prediction

High resolution

Predicting energy + structure for *every* loop

We thank:

- Stanford Biochemistry Department for adopting us
- John Karanicolas, David Baker (RNA hi-res)
- Vijay Pande and group (MD expertise)
- Adrien Treuille, Jee Lee + colleagues
- Andrew Leaver-Fay, Sergey Lyskov, Rosetta community

Jane Coffin Childs Foundation

Inspiration from the protein world

- Blind predictions in CASP7 some with near-atomic resolution agreement with crystal structures.
- **Practical connections**: engineering new proteins, the crystallographic phase problem, improving NMR models, more...

<u>The key:</u> Putting all the atoms in.

Ingredients of a high resolution potential

1. Van der waals packing

3. Manifestations of water

2. Hydrogen bonds

4. Torsional potential

How can we visualize RNA?

Crystallography and NMR – powerful *when they work*

Proteins

- 50,000 structures
- 5000 "families"

- ~1,000 structures
- 50 different ribozymes, riboswitches, etc.

How can we visualize RNA?

Manual modeling, with clues from evolution

Michael Levitt's 1969 model of tRNA

Westhof & colleagues

Model

Subsequently released crystal srtucture

Can we do better? Truly *de novo*? High res... 1–2 Å accuracy?

Ground-level physical questions in RNA

How do real riboswitches sense **multiple** ligands **cooperatively**?

Do random RNA sequences have structure?

AAACGUUGCACUU AGCGAAUCAGUAA GGCAGUCG... Why do RNA's misfold so frequently?

What is the full range of possibilities for RNA structure?

5. Electrostatic repulsion (screened)

