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outline

• Inverse Kinematics

• Tetrahedral equ & Bricard Octahedra

• Triaxial loop closure

• Conformational searches: complications

• Non-generic flexibility = failure

• Constraints: deterministic, approximate

• Example: fixed position/sidechain orientation



base
end effector: 
position and 
orientation are 
prescribed

arbitrary 
chain

rotatable arm (R-joint)
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Inverse kinematics:given base, find
torsions that place end effector
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4 torsions can be 
changed simultaneously 
so that their combined 
effect cancels at (almost) 
any given point

fixed end
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Although atom j is 
now fixed, the chain 
past j rotates about 
an effective axis 
through j
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base
end effector

The end triad is moved due 
to change in the i-th torsion
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base Using six “adjustor” torsions cancels effect of 
changing i-th torsion, keeping end triad (and 
all subsequent atoms) fixed in space
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“The Mt. Everest of kinematics”

A. Freudenstein
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Robotics 7R/7bar problem: Lee&Liang, 1988

The formulation is quite involved; however it eventually leads 
to a generalized eigenproblem. The numerical computation in 
this form is approx. 10-100x slower than for the Triaxial-Dixon  
algorithm.
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Study of localized motions in a polypeptide chain 11
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Peptide axis rotation:
With the two end carbons fixed in 
space, the peptide unit rotates 
about the virtual bond

δτσ +=
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In the body frameIn the space frame

Representation of Loop Structures

Coutsias, Seok, Jacobson, Dill, JCC 2004
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With the base                       and
the lengths of the two peptide
virtual bonds fixed, the vertex

is constrained to lie on
a circle. 
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Bond vectors
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Fixed  
distance

15



α
1−nC

α
nC

α
1+nC

In the body frame of the
three         carbons, the anchor 
bonds lie in cones about the 
fixed base.

αC
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δ

LOOP CLOSURE: find all configurations with two end-bonds fixed
The angle between the planes  N1-Ca1-Ca3 and Ca1-Ca3-C’3 is given,
the orientation of the two fixed bonds (N1-Ca1 and Ca3-C’3) wrt the plane 
Ca1-Ca2-Ca3  can assume several values (at most 8 solutions are possible)
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Transferred motions in the body frame 
of  three contiguous Ca carbon units:
In this frame the Ca carbons resemble

spherical 4-bar linkage joints
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Coordinated rotation at junction of 
2 rotatable bonds (the angle 
between the two bonds remains 
fixed as each rotates about its own 
peptide unit virtual axis). 
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A complete cycle through the allowed values for ϕ (dihedral
(R1,R2) -(L1,R1) )and ψ  (dihedral (R1,R2)-(L2,R2))
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With angles a, x, h, q fixed, the torsions s, t are coupled.

Analysis is carried out by “rationalizing” trigonometric 
expressions through the half-angle formulas:



Equation of the Tetrahedral Angle
Raoul Bricard, 1897

(study of flexible octahedra)
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General 6-member ring 
(Octahedron)
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Elimination in Polynomial systems

• Pairwise elimination: Sylvesterresultant

• Simultaneous elimination: Dixon resultant

• Both methods lead to a single polynomial in 
one of the variables: 16th degree

• Differ in complexity and numerical 
accuracy
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Dixon matrix: coefficients of Dixon 
polynomial, arranged by monomials in x, y

If u1, u2 are roots of original system, U becomes a right null 
vector. Therefore the vanishing of det D is a necessary condition 
for the existence of a common root.
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The Dixon resultant contains an extraneous factor (deg. 16)

Coutsias, Seok, Wester, Dill, JCC 2005
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Eliminating the extraneous factor there results a matrix 
polynomial of degree 2; its determinant can be computed 
with a companion matrix of size 16X16. Then the real 
eigenvalues give u3 for all possible conformations. Values 
for the other two variables are found from the appropriate 
eigenvector components 

Successive elimination (Sylvester resultant method) results in 
a matrix of size 6X6 but with quartic coefficients, leading to 
a companion matrix of size 24X24 (but still a 16th degree 
polynomial)
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QZ or Characteristic Polynomial

Either:
• (1) Solve generalized eigenproblem using QZ algorithm 

(cubic order in matrix size, here approx. 16^3 ~4kflops)
Or:

• (2a) Use Lagrange’s expansionin complementary minors 
to efficiently compute the characteristic polynomial of the 
Dixon resultant (~2.2kflops).

• (2b) Use Sturm sequences(count number of real zeros 
between two values) for an efficient computation of real 
zeros from characteristic polynomial (bisection/Newton: 
variable, but low, cost)
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Rotate segments 1,2 about resp. virtual axes by angles τ 1 ,  
τ 2

Rotate entire loop about virtual axis 3 by angle τ 3

Choose values of the τ 1 , τ 2 , τ 3  to fix bond angles θ  

1τ
2τ

3τ1θ

2θ

3θ

Method calculates all (0-16)
possible loop configurations
that bridge given gap.

are anchor
bonds defining the two ends
of the loop.

VC

Triaxial 
Loop 
Closure

1 2

3
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TR432 loop refinement

White: native

Purple: model 1

Green: template
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1srp

CCD

KIC

KIC provides superior sampling, 
compared to current Rosetta 
protocol (based on Cyclic 
Coordinate Descent-Canutescu & 
Dunbrack, JCC 2003)

Mandell, Coutsias, Kortemme; Nature Meth. 6(8), 551-2, 2009
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1rro

CCD

KIC

Mandell, Coutsias, Kortemme; 
Nature Meth. 6(8), 551-2, 2009
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2cpl

CCD

KIC

Mandell, Coutsias, Kortemme; Nature Meth. 6(8), 551-2, 2009
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o115

Comparison of algorithms: exhaustive covering 
of the conformational space of cyclooctane. 
Two torsions set to arbitrary values, other 6 
determined to satisfy closure 47



Pollock & Coutsias, (preprint, 2009)
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49

1st chaotic ridge, shown in t5-t8 
projection, is a pathology for 
both TLC and LL algorithms

8θ

5θ



3-D Embedding from Isomap
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Conformation space of canonical cyclooctane, the 
simplest 2DoF closed loop: complete cover 
(.5deg) involving ~1M points, was reduced to 
high-res cover of 3K pts with ISOMAP; space is 
an algebraic variety, not a manifold!
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Brown et al, JCP, 2008;

Martin et al, preprint (2009)
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Constrained sampling

• Multiple (long) loops 

• Tetrapeptide+distance(s), orientation

• Pentapeptide + localization

• Cysteine bridges, multiple loops

• Uncertain Ca positions

• Sampling a binding pocket
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locked 
hinge

free 
hinge

bond

virtual torsions

constraints

virtual axes

5 coupled tetrahedrals=> 2*2^5 = 64 possible solutions

example: additional 
backbone distance 
constraints

43
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locked 
hinge

free 
hinge

bond

first loop

Example: Sampling a contact: sample 
triad positions and double loop closure

second loop
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locked 
hinge

free 
hinge

bond

first loop

Example: Sampling a contact: sample 
triad positions and double loop closure

second loop
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locked 
hinge

free 
hinge

bond

first loop

Special case: tailoring a cysteine bridge

second loop
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S2 bridge

free



fixed in space

S2 bridge

free
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fixed in space

virtual
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(1a) Tetrapeptide: 2 DoF

1
αC

1N

3
αC2

αC

4
αC

pivots free
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(1b) tetrapeptide with Ca1-Ca3 
distance fixed: 1 dof 

1
αC

1N

3
αC2

αC

4
αC

σ

τ

61



Tetrahedral equation 
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(1c) tetrapeptide with Ca1-Ca3 and 
Ca2-Ca4 distances fixed: up to 32 

solutions (4 tetrahedral equs, 0 dof) 

1
αC

1N

3
αC2

αC

4
αC

pivots
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(2) A tetrapeptide with a directional 
constraint: here a CO bond is constrained to 

hydrogen-bond forming range

1
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2
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3
αC

4
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1ϑ

2ϑ
1N

4C
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(3) Localization constraint: 
Pentapeptide loop with mid-Ca atom 

fixed
2
αC

5
αC

4
αC

3
αC

1
αC

1N
5C

3N

Constraint count: 2x5 – 6(closure) – 3(localization)= 1 DoF
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(3a) Pure sampling: 4DoF sampled, 
filter for mid-Ca in target region

pivots free
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2
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5
αC

4
αC

3
αC

1
αC

1N
5C

3N

Pivot Ca and compensator torsion (set)

non-pivot Ca and adjustor torsion (sampled)

Sample 4 DoF and select 
conformations with mid-
Ca in target region

Pure sampling: 4DoF sampled, filter for mid-Ca in target region

given vector
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(3b)Localization: double loop-closure

• First closure: set mid-Ca to a point in target region 
(restricted 3d search)

• Choose a NCa vector (full 2d search)
• First closure: based on res. 3-4-5, fixes CaC
• Second closure: based on res. 1-2-3, moves NCa 

to new position
• All atoms placed and Ca correct, but need to select 

based on feasibility of Cb. Cannot easily avoid 
redundant sampling.
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3N

Pivot Ca and compensator torsion (set)

NCa axis (sampled, 2 DoF - redundant)

Sample 4 DoF and select 
conformations with mid-
Ca in target region

LC+position (Ca: 3 cartesian coord) /orientation (NCa: 2 angles)
5DoF sampling: prescribed localization / oversampled orientation

Mid Ca position (sampled 
3DoF - sharp)

3C

1
2
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Pivot Ca and compensator torsion (set) Sample 4 DoF and select 
conformations with mid-
Ca in target region

LC+position (Ca: 3 cartesian coords) /orientation (NCa: 2 angles) 
5DoF sampling: prescribed localization / oversampled orientation

Mid Ca position (sampled 
3DoF - sharp)

3C
Fixed 
vector

non-pivot Ca and adjustor torsion (sampled)

(3c) Optimal strategy (1dof sampled)
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(4) Tetrapeptide loop with a 
Cysteine bridge to fixed backbone. 
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(5) Guided sampling: Exploring 
conformations compatible with a 

binding pocket.
E∇

Rd
r
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Appendix: Other applications

• Fragment assembly (Chaok Seok, Joulyan 
Lee)

• Concerted moves Monte Carlo (Jerome 
Nilmeier, Matt Jacobson, Lan Hua)

• Helical protein assembly (Albert Wu, Ken 
Dill, Justin MacCallum)
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Minimization of Angle Deviation
• Fragment assembly methods are often applied to protein structure problems.

• When structures are generated for a segment such as a protein loop, assembled fragments are not fit into the 
frame of the protein of interest exactly.

• Deviation of the dihedral angles of the loop from the fragment angles are minimized here to maintain the 
features obtained from the structure database as well as possible,

• Two methods have been tried: 1) Monte Carlo simulation and 2) A local minimization in the space of loop 
conformations satisfying the loop closure constraint. In both method, root-mean-square deviation in 
dihedral angles is used as the objective function. 

• Monte Carlo simulation: 1 driver angle is perturbed randomly within 10 deg, 6 torsion angles are used to 
close the loop. kT=0.5 deg and 2000 MC steps. 20 independent simulations starting from different initial 
loop closure were performed for each starting conformation generated from fragment assembly.

• Minimization using the kinematic Jacobian: 100 steps of steepest descent minimization, and subsequent 
LBFGS-b minimization (termination criterion: function decrease: 10^7*machine precision, gradient: 10^(-
3)). 20 independent minimization starting from different initial loop closure.

• Results: two loops, 8-residue loop of 135l (residues 84-91) and 12-residue loop of (35-46), were tested. 
R_ave is RMSD averaged over the different conformations generated from fragment assembly. R_min is 
the min RMSD. Dphi_init is the initial deviation in angles, and dphi_ave is the final deviation averaged 
over the conformations. The overall performance of the two methods is similar, but the computation time is 
much faster with Jac method.
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Protein
135l 1eco

length
8 12

# of conf from fragment assembly
87 127

dphi_init (deg)
34.3 28.0 

R_ave (A) MC 2.5 3.9 

Jac 2.7 5.2 

R_min (A) MC 1.0 1.3 

Jac 1.1 1.3 

dphi_ave (deg) MC 18.1 15.8 

Jac 17.0 15.4 

Time (sec) MC 38.9 91.7 

Jac 5.4 5.1 
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TIM loop Dynamics using TLC 
a) b) c) d)a) b) c) d)

a) Native closed loop (blue) bound to ligand PGA), and Native open loop (red).  
b) apo simulations of loops. 
c)  Loop simulation without the use of proline loop closure (pucker) 
moves, and 
d) Loop simulation with the incorporation of proline pucker 
trial moves
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Constrained binding pocket 
simulations using loop closure 

• a) schematic of a binding pocket as a series of loops.  

• b) Preliminary simulation of PI3 kinase, with a single loop 

and adjacent sidechains.

a) b)a) b)
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Assembly of helical proteins

A simple heuristic based on fast loop closure and 
maximal hydrophobic packing—as measured by radius 

of gyration of the Ca atoms in hydrophobic residues
Motivated from need to improve assembly 

performance of Dill group’s Zipping & Assembly 
strategy for tertiary structure prediction

G.A. Wu, E.A. Coutsias, K.A. Dill, Iterative Assembly of Helical Proteins 
by Optimal Hydrophobic Packing, (Structure, 2002)
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The assembly algorithm

• Begin with a protein whose secondary structure is 
known to contain helices (as determined, e.g. by 
DSSP, Kabsch,Sander, Biopolymers 22, 2577-2637 (1983) ) remove 
loops and consider the problem of placing the 
helices relative to each other

• Align two helices; score each alignment; select 
best subset, close loop(s).

• Align next helix with assemblage of first two, 
close loop; iterate

• Cluster/rank by RgH; select best candidates based 
on a hydrophobic packing criterion.
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Object assembly en masse: identical equations to loop 
closure. A possible approach to avoid searching. Assemble 
all elements at once into geometrically feasible 
configurations.
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1, 2 rings

3 rings

4 rings

all possible graph topologies with up 
to 4 rings, with only 3-node contacts

Wester, Pollock, Coutsias, Allu, 
Muresan & Oprea, Topological 
Analysis of Molecular Scaffolds II: 
Analysis of Chemical Databases 
(JSim, 2008)

http://topology.health.unm.edu

Graph Theory: 
assemble using 
topological graphs 
and combinatorics
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Sample all possible hydrophobic pairings between two helices

2 DoF sampled: translation and rotation about alignment axis

Limited by loop closability

Ensemble of structures generated, ranked by RgH, clustered by 
mutual RMSD, lowest RgH structure kept  per cluster

Cluster cutoff heuristic: (n-1)Ang, n = #of helices in assembly
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• starting with long loops, we would need to keep 
less compact conformations (in addition to 
compact ones) in order to ensure the native 
conformation is covered. 
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• starting with long loops, we would need to keep 
less compact conformations (in addition to 
compact ones) in order to ensure the native 
conformation is covered. 

• by adding long loop closure at the later steps, 
we have a more limited conformation space to 
explore due of excluded volume effects (i.e.  
steric constraints with the pre-assembled parts).
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• starting with long loops, we would need to keep 
less compact conformations (in addition to 
compact ones) in order to ensure the native 
conformation is covered. 

• by adding long loop closure at the later steps, 
we have a more limited conformation space to 
explore due of excluded volume effects (i.e.  
steric constraints with the pre-assembled parts).

• Amber force field energy minimization is done 
after loop closure for better sterics (30-60 sd/cg 
steps)
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2HEP (2hx)

Topology 1

a

rmsd = 1.27(32)



1PRB (3hx):  

assembly order:

2-1
2

1

Topology 2

a

rmsd = 1.5(1)



Larger proteins

• subtle connectivity topology errors may

exist, although overall RMSD is still good
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2CRO (5 helix)

assembly order:

2-1-3-41

4

3

2

Topology 22

a

b

Topology 21

rmsd = 3.99(55)



Disulfide bridged proteins

• RgH scoring not discriminating: native not

among few best structures

• Imposing known disulfide bonds introduces 
sufficient restrictions (at least in the 5 proteins we 
attempted) that still allowed us to sample near-
native structures

• TLC applicable to S2 bridges (but not included in 
current implementation); used amber9 with 
restraints to close bridges for these studies
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1C5A (4hx)  

assembly order:        

3-2-1

1

23a

Topology 6 (21)RMSD = 2(103),



Helical protein gallery: native
vs. lowest rmsd model

)32(27.1 )3(52.1 )24(58.1 )19(92.1 )21(67.1

)13(51.1

)6(93.1

)20(80.1 )1(50.1 )13(03.2

)1(80.1 )2(21.2 )34(50.2 )10(67.2 )19(96.2
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[ ]3 [ ]2 [ ]3 [ ]2 [ ]2

)30(29.2 )8(91.2 )22(54.4 )47(21.3 )42(22.4

)8(14.2 )43(00.4 )12(01.4 )15(10.5 )23(59.4

)30(45.2 )9(69.1 )17(49.2 )2(21.3 )28(73.2
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