Specificity Prediction and Design of Phosphoswitches

RosettaCon – August 5, 2009 Colin A. Smith, Kortemme Lab

Premise and Goal:

Premise and Goal:

• Correct prediction of what amino acid types at an interface either allow or disallow binding will allow us to:

Premise and Goal:

- Correct prediction of what amino acid types at an interface either allow or disallow binding will allow us to:
 - Predict what members will interact in a family similarly interacting molecules

Premise and Goal:

- Correct prediction of what amino acid types at an interface either allow or disallow binding will allow us to:
 - Predict what members will interact in a family similarly interacting molecules
 - Engineer new partners and/or trigger structural events that change specificity

Premise and Goal:

- Correct prediction of what amino acid types at an interface either allow or disallow binding will allow us to:
 - Predict what members will interact in a family similarly interacting molecules
 - Engineer new partners and/or trigger structural events that change specificity
- Use PDZ domains as a model system for method development and structural understanding

PDZ domains recognize several positions in C-terminal peptides with high specificity

Phage Display Data Sets:

- 54 Human PDZ Domains (16 X-ray & 2 NMR complexes in PDB)
- 28 C. elegans PDZ Domains (none in PDB)
- Erbin PDZ Domain Mutants:
 - 91 Point Mutants
 - 61 5-8 Residue Mutants (E-1 to E-61)
 - 53 Enumerating a Mutational Pathway WT...E-14

Method/Scoring Function Notes

• Upweighted interface energies by a factor of 2

- Turned off environment dependent hydrogen bonding
- Penalized histidine by 1.2 score units

Method/Scoring Function Notes

• Upweighted interface energies by a factor of 2

- Turned off environment dependent hydrogen bonding
- Penalized histidine by 1.2 score units
- NMR structures were proved just as effective as crystal structures (or more)

Future Directions/ Challenges

Future Directions/ Challenges

• Better backbone sampling/ constrained motions/relax

Future Directions/ Challenges

- Better backbone sampling/ constrained motions/relax
- Electrostatics:
 - Intricate hydrogen bond networks radius of convergence, demand high resolution
 - Surface salt bridges not weighted strongly enough in default score function

<text><text>

Regulated Scaffolding Project Goal

Engineering an adapter domain to have peptide binding and/or specificity regulated by phosphorylation

Next Step: Use computational design to test several models of phophoregulation

Next Step: Use computational design to test several models of phophoregulation

Destabilize Domain Structure

Phosphorylation Dephosphorylation

Next Step: Use computational design to test several models of phophoregulation

Acknowledgements

Tanja Kortemme Elisabeth Humphris Sachdev Sidhu Andreas Ernst Justin Ashworth Catherine Shi Matt Chroust Matt Jacobson

Genentech Scholars Program Department of Defense NDSEG NSF Synthetic Biology Engineering Research Center