Structure prediction of zinc-binding proteins

Chu Wang
2009 RosettaCON

One yearago ...

A J edi apprentice was a bout to finish his tra ining from the a cademy ... He was summoned to his master in 2008 Annual Jedi Congress...

Master: I sensed the disturbance in the force when metal binds to protein. Your are the chosen one to uncover its mystery ...
Apprentice: l've got a very bad feeling about this.
Master: I find your lack of faith disturbing.
Apprentice: But how?
Master: Use the force!
Apprentice: The force?
Master: Yes. The Force is what gives a Jedi his power. It's an energy field created by all living things. It surrounds us and penetrates us. It binds the galaxy together. May the force be with you!

The apprentice set out to uncover the mystery, but he was lost in a galaxy far far a way. One yearlater, he found his way back, thanks to the summons of the force, with his find ings...

"Disturbance" of zinc-binding

"Znc-finger" in DNA replication and transc ription.
"Znc-meta lloproteases" in cell differentiation, a poptosis a nd host defense etc.
粦 About 2800 potential zinc-bind ing proteins estimated by genome a nalysis, corresponding to 10% of human genome.

"Dark nature" of zinc-binding

"Structural" zinc

- Tetrahedral coordination
- Four liganding residues
- Cys/His dominant

"Catalytic" zinc
- Tetrahedral coordination
- Three liganding residues
- His/Glu/Asp dominant

＂Strong force＂of Rosetta 3.0

＊OOP design of chemic al layer for easy residue creation．
粦 new residue \＆variants： $\mathbb{Z N}, \mathrm{CYZ}$ HIS＿D／E
＊Annotated fasta：chemic al signature
絭＂Atom－tree＂kinematics to integrate all DOFs．
粦 Protein folding with zinc binding
粦 Torsion \＆J ump fragment library
＊OOP design of scoring engine for easy energy creation a nd evaluation，e．g．，constra ints．
粦 Enforce tetrahedral zinc－coordination geometry with multi－constraints
粦 OOP design of protoc ol layer for easy protocol sharing
垔 ab initio folding \＆loop modeling：from nomal protein to zinc－metalloprotein

"Use the force" (I)-- zinc residue

** Perfecttetrahedron
** Znc atom center

* Four virtual atom vertexes
* Zn-V distance of 2.20A
* Virtual atoms
* No interaction energy
* To define rigid-body orientation of zinc residue
* To define tetrahedral zinc coordination constra ints

＂Use the force＂（II）－－annotated fasta sequence

＊Standard fasta
＊PPG LCPRCKKG YHWKSEC KSKFDKDG NPLPP
粦Annotated fasta
3＊P［PRO＿p：NtemProte inFull］PG LC［CYZ］PRC［CYZ］KKGYH［HIS D］WKSEC［CYZ］KSKFDKDG NPLPP［PRO＿p：CtermProteinFull］ $\bar{Z} \mathbb{Z}]$
粦 Znc－coordinating residues need to be pre－defined．
粪 From sequence a lignment
＊From chemical shift data
＊＊As protein chemical signature to be included in general Rosetta silent IO．

"Use the force" (III) -- J ump library for zinc

Fold Tree

- O

Nterm

Residue-Zn	d	θ_{1}	θ_{2}	Φ_{1}	Φ_{2}	Φ_{12}
Cys - Zn	$\mathrm{S}_{\gamma}-\mathrm{Zn}$	$\mathrm{C}_{\beta}-\mathrm{S}_{\gamma}-\mathrm{Zn}$	$\mathrm{S}_{\gamma}-\mathrm{Zn}-\mathrm{V}_{1}$	$\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{S}_{\gamma} \mathrm{F} \mathrm{Zn}$	$\mathrm{C}_{\beta}-\mathrm{S}_{\gamma}-\mathrm{Zn}-\mathrm{V}_{1}$	$\mathrm{S}_{\gamma}-\mathrm{Zn}-\mathrm{V}_{1}-\mathrm{V}_{2}$
	$2.20 \AA$	112.0°	109.5°	$-180^{\circ}: 180^{\circ}: 30^{\circ}$	$-180^{\circ}: 180^{\circ}: 30^{\circ}$	120.0°
$\operatorname{His}(\mathrm{D})-\mathrm{Zn}$	$\mathrm{N}_{811} \mathrm{Zn}$	$\mathrm{C} \gamma-\mathrm{N}_{81}-\mathrm{Zn}$	$\mathrm{N}_{81}-\mathrm{Zn}-\mathrm{V}_{1}$	$\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}-\mathrm{N}_{81}-\mathrm{Zn}$	$\mathrm{C}_{\mathrm{r}}-\mathrm{N}_{\mathrm{d1}}-\mathrm{Zn}-\mathrm{V}_{1}$	$\mathrm{N}_{81}-\mathrm{Zn}-\mathrm{V}_{1}-\mathrm{V}_{2}$
	$2.20 \AA$	120.0°	109.5°	0.0°	$-180^{\circ}: 180^{\circ}: 30^{\circ}$	120.0°
$\mathrm{His}(\mathrm{E})-\mathrm{Zn}$	$\mathrm{N}_{\mathrm{c} 2}-\mathrm{Zn}$	$\mathrm{C}_{82}-\mathrm{N}_{\mathrm{c} 2}-\mathrm{Zn}$	$\mathrm{N}_{\mathrm{c} 2}-\mathrm{Zn}-\mathrm{V}_{1}$	$\mathrm{C}_{\gamma}-\mathrm{C}_{\delta 2}-\mathrm{N}_{\mathrm{c} 2}-\mathrm{Zn}$	$\mathrm{C}_{\delta 2}-\mathrm{N}_{\mathrm{c} 2}-\mathrm{Zn}-\mathrm{V}_{1}$	$\mathrm{N}_{\mathrm{c} 2}-\mathrm{Zn}-\mathrm{V}_{1}-\mathrm{V}_{2}$
	2.20®	120.0°	109.5°	180.0°	$-180^{\circ}: 180^{\circ}: 30^{\circ}$. 120.0°

$$
\mathbf{N}
$$

"Use the force" (VI) -- full-atom constra ints for zinc-coordination

- distance constraints to virtual atoms
- zero distance tether
- force tetrahedral
- angular constraints
- dihedral constraints
- in His ring
- multi constraints
- one for each zinc-residue pair
- ambiguous constraints
- handle chrality

＂Use the force＂（V）－－ab initio folding \＆loop modeling

＊Reuse existing protocols
＊Define an annotated sequence with Znc
業 Define a fold tree and a jump library of Znc
粦 Define centroid and all－atom constra ints
業 Hope that the force is with you

"Force Balance" -- Abrelax

Kornhaber, G. J., Snyder, D., Moseley, H. N. \& Montelione, G. T. (2006). Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data. J Biomol NMR 34, 259-69.

"When The force is with me" -- 1r9p

96 residues; 1.26A msd

"When The force is with me" -- 1m3v

60 residues; 2 zincs; 1.96A msd

"Force Balance" -- Loop Modeling

BL5	Va nilla	Znc
<2	2	5
$2-5$	4	5
>5	10	6

BL5: best loop ms of the top 5 models ranked by energy

"When The force is with me" -- 1d0q

"When The force is with me" -- 2orw

Loop1: 135-49; 2 fixed zinc-residues

New insights of "force"

** Folding of proteins with other metals or small ligands

* De Novo Design of proteins with metals or small ligands.

Breaking News: Change we can!

August 5th, Leavenworth, WA www.news-A-long-time-ago-in-a-galaxy-far-far-away.com

Last night, in the 2009 annual J edi congress, the Grand Master delivered his key-note speech in front of all delegates...
Master: I start to sense more disturbances in the force.
Master: Rumors like "structures are not important any more" are being spread
Master: The menace of Molecular Dynamics is emerging
Master: Trays which we use to collect energy source were taken a way, but most disturbing of all,

Master: Documented the secretes of using the force we have not. With more and more interest from the public, our young J edi apprentices may be distracted from their training to become "bounty" hunters, I am a fraid.
Master: So change we must have! And change we can! May the force be with you!

According to a high-rank council member who wants to remain anonymous, new plan forchange will be discussed at the Jedi council meeting soon

Salute to

業＂Grand Master＂Bakerfortraining me from a droid into a knight
粦＂Knight＂Lange for mini Abrelax
粦＂Knight＂Tyka for mini Loops
铼＂Apprentice＂Vemon forcs＿frags
粦＂Master＂Bradley and Leaver－Fay for leading general mini development
墣＂Master＂Bradley and Schueler－Fumnan for organizing this congress
Droids，younglings，apprentices，knights and masters， may the force be with you！

