Improved Enzyme Designs -since last RosettaCon

Eric Althoff (and Lin Jiang) University of Washington

Flow chart of computational enzyme design for multi-step reaction

Catalytic motifs used in designs

Diversification of transition state

^a. all torsion angles take their starting values from the QM lowest energy TS model of the R-enantiomer based on the QM caculation for C-C bond-breaking step

Diversification of side-chains

	ideal value	deviation	# of conformations
d	1.3Å	+/-0.2Å a	1
θ_1	125°	+/ - 5° a	1
θ_2	120°	+/-5° a	1
χ1	180° b	+/ - 10°	3
χ ₂	0°,180° b	+/-10°	6
χ3	0° °	every 60°	6
	(1 20 d		
χ_1	64.3° °	+/-/.6°	
χ2'	178.9° °	+/-8.1°	
χ3'	177.5° d	+/-10.0°	
χ4'	-179.2° d	+/ - 9.6°	
χ1' -	X4'		28x81 ^e
all			244,944

Flow chart of computational enzyme design for multi-step reaction

Precalculate Active Site Grid in Scaffold Proteins

-high resolution structures-binding pocket

Andrew Wollacott

Flow chart of computational enzyme design for multi-step reaction

Generation of active site description: the transition state model and functional group positioning

Placement of first catalytic sidechain rotamers

Placement of an ensemble of TS models

Placement of second catalytic sidechain rotamers

Placement of an ensemble of TS models

Placement of third catalytic sidechain rotamers

Placement of an ensemble of TS models

Identification of overlap among TS ensembles by hashing

Identification of overlap among TS ensembles by hashing

Flow chart of computational enzyme design for multi-step reaction

Optimization of TS and catalytic side-chains orientation

Flow chart of computational enzyme design for multi-step reaction

Design model RA46 on indole-3-glycerol phosphate synthase scaffold

1. Hydrogen Bonding Satisfied 2. SASA optimized

Flow chart of computational enzyme design for multi-step reaction

Schiff-base formation and enzyme activity for different catalytic sites

Moti f	Catalytic lysine environment	Carbinolamine stabilization	Proton abstraction	# tested	# forming enaminone	# active designs	Rate enhancement
Ι	Polar	-	Lys/Asp dyad	12	2	0	
II	Hydrophobic	-	Tyr	9	1	0	
III	Hydrophobic	H-bond acceptor/donor	His/Asp dyad	13	10	10	$10^2 \sim 10^3$
IV	Hydrophobic	Water, H-bond acceptor	Water	38	20	22	10 ³ ~10 ⁴

Progress Curves Aldolase Design

Determination of Kinetic Parameters

Determination of Kinetic Parameters

Design	$k_{cat} (x 10^{-3} min^{-1})$	$K_{M} (\mu M)$	$k_{cat}/K_{M} (M^{-1}s^{-1})$	k_{cat}/k_{uncat} *	
RA22	$_{\rm b}3.1 \pm 0.3$	$_{\rm b}480 \pm 130$	$_{\rm b}0.11 \pm 0.03$	$_{\rm b}8.1 \ {\rm x} \ 10^3$	
	$_{\rm s}0.5\pm0.1$	$_{\rm s}450~\pm~210$	$_{\rm s}0.018 \pm 0.006$	$_{\rm s}$ 1.2 x 10 ³	
RA34	$_{\rm b}4.2 \pm 1.1$	$_{\rm b}620 \pm 180$	$_{\rm b}0.11 \pm 0.01$	$_{\rm b}1.1 \ {\rm x} \ 10^4$	
	$_{\rm s}0.6\pm0.1$	$_{\rm s}600 \pm 140$	$_{\rm s}0.016 \pm 0.004$	$_{\rm s}1.5 \ {\rm x} \ 10^3$	
RA45	2.3 ± 0.2	430 ± 48	0.091 ± 0.004	$6.0 \ge 10^3$	
RA46	0.62 ± 0.5	290 ± 60	0.037 ± 0.006	$1.6 \ge 10^3$	
RA60	9.3 ± 0.9	510 ± 33	0.30 ± 0.06	2.4 x 10 ⁴	
RA61	9.0 ± 1.0	210 ± 50	0.74 ± 0.11	2.3 x 10 ⁴	
* k_{uncat} = 3.9 x 10 ⁻⁷ min ⁻¹ (19)			b = burst phase, s = steady stat e		

Comparison between the design model and the X-ray structure (RA22)

Barry Stoddard, Lindsey Doyle

Comparison between the design model and the X-ray structure (RA61)

Barry Stoddard, Lindsey Doyle

10⁴ fold enhancement ceiling

How can we get higher? -What are we missing?

RA60 Saturation Mutagenesis

Ling Wang, Zhizhi Wang

S87W

V178H

A174M

10⁵!!!!

Aldolase Experimental Summary

- 70 of 72 designs were soluble
- Retro-Aldol activity detected for 11 lysine positions across 5 scaffolds and 32 design
- Best activity is 2 x 10⁴ fold rate enhancement
- Atomic accuracy of design process shown by crystal structures

Acknowledgments

- Rosetta Community
- David Baker
- Andrew Wollacott
- Lin Jiang
- Alexandre Zanghellini
- Daniela Roethlisberger
- Jamie Betker
- Jasmine Gallaher
- Lindsey Doyle
- Barry Stoddard

- Fernando Clemente
- Ken Houk
- Don Hilvert
- Fujie Tanaka
- Carlos Barbas

 DARPA and the NIH for funding