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Flow chart of computational enzyme design for multi-step reaction
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Retro-aldol reaction
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Aldol reaction pathway through enamine formation
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Catalytic motifs used in designs
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Diversification of transition state

X4 O

optimal value?  deviation # of conformations I
¥ 91°,-89° +/-10° 6
K2 -177° +/-10° 3
w3 109°-71° +/-10° 6
x4 0,180° +/-20° 6
(R,S)-enantiomers 2
total 1,296

4, all torsion angles take their starting values from the QM
lowest energy TS model of the R-enantiomer based on the
QM caculation for C-C bond-breaking step



Diversification of side-chains

LyS X2 Wi -
YR
Al %3 6, k OH
p o) LD d
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p | R
ideal value  deviation # of conformations
d 1.3A +/-0.2A 2 1
0, 125° +/-5¢ 4 1
82 120° +/-5¢ 4 1
%1 180° P +/-10° 3
%o 0°,180° b +/-10° 6
%3 0°¢ every 60° 6
¥, 64.3°4 +/-7.6°
e 178.9°d +/-8.1°
(3 177.504d +/-10.0°
%4’ -179.204d +/-9.6°
%1 - K 28x81¢
all 244 944
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Precalculate Active Site Grid in Scaffold Proteins

-high resolution structures
-binding pocket

Andrew Wollacott
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Generation of active site description: the transition state
model and functional group positioning
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Placement of first catalytic sidechain rotamers




Placement of an ensemble of TS models




Placement of second catalytic sidechain rotamers
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Placement of an ensemble of TS models




Placement of third catalytic sidechain rotamers
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Placement of an ensemble of TS models




|dentification of overlap among TS ensembles by hashing

Alexandre Zanghellini



|dentification of overlap among TS ensembles by hashing
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Optimization of TS and catalytic side-chains orientation
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Design model RA46 on indole-3-glycerol phosphate

synthase scaffold
& i
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Schiff-base formation and enzyme activity for different catalytic sites
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Progress Curves Aldolase Design
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Determination of Kinetic Parameters
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Determination of Kinetic Parameters

Design kg (x10°min) Ky M) k. /Ky (M'sh [ -~

RApy 03103 480 = 130 ,0.11 + 0.03 »8.1 x 10°

0.5+0.1 450 + 210 ,0.018 + 0.006 1.2x10°
RA34 42+ 1.1 ,620 = 180 ,0.11 + 0.01 ,1.1x 10°

0.6+0.1 600 + 140 .0.016 + 0.004 1.5x10°
RA45 23 + 0.2 430 + 48 0.091 = 0.004 6.0 x 10°
RA46 062+0.5 290 + 60 0.037 = 0.006 1.6 x 10°
RAG60 93+0.9 510 + 33 0.30 + 0.06 2.4 x 10*
RAG61 90+1.0 210 + 50 0.74 + 0.11 2.3 x 10*

* Konea= 3.9 X 10" min'(1 9) b = burst phase, s = steady stat e



Comparison between the design model and the X-ray structure (RA22)




Comparison between the design model and the X-ray structure (RA61)

Barry Stoddard, Lindsey Doyle



104 fold enhancement ceiling

How can we get higher?
-What are we missing?



RAGO Saturation Mutagenesis
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Ling Wang, Zhizhi Wang
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Aldolase Experimental Summary

70 of 72 designs were soluble

Retro-Aldol activity detected for 11 lysine
positions across 5 scaffolds and 32 design

Best activity is 2 x 10% fold rate enhancement

Atomic accuracy of design process shown by
crystal structures
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