High Resolution Protein Refinement and the X-ray Crystallographic Phase Problem

> Vatsan Raman Baker Lab University of Washington, Seattle

> July 22nd 2008 - ROSETTACON

The Protein Folding Problem

GTPDIIVNAQINS EDENVLDFIIEDE YYLKKRGVGAHII KVASSPQLRLLY KNAYSTVSCGNY GVLCNLVQNGEY DLNAIMFNCAEIK LNKGQMLFQTKI WR

The Protein Folding Problem

GTPDIIVNAQINS EDENVLDFIIEDE YYLKKRGVGAHII KVASSPQLRLLY KNAYSTVSCGNY GVLCNLVQNGEY DLNAIMFNCAEIK LNKGQMLFQTKI WR

Protein sequences vs Protein structures

Yearly Growth of Total Structures

~50,000 known structures in PDB

RCSB Protein Data Bank - May 2008

Protein sequences vs Protein structures

~400,000 known protein sequences

UniProtKB/Swiss-Prot protein sequence database - May 2008

Protein sequences vs Protein structures

~400,000 known protein sequences

UniProtKB/Swiss-Prot protein sequence database - May 2008

Baker and Sali Science (2001)

Baker and Sali Science (2001)

What are the sources of low resolution models ?

I. Homology models

2. NMR structures

3. Cryo Electron Microscopy Structures

What are the sources of low resolution models ?

I. Homology models

2. NMR structures

3. Cryo Electron Microscopy Structures

What are the sources of low resolution models ?

I. Homology models

DIFFERENT STARTING POINTS, SAME UNDERLYING PROBLEM High Resolution Refinement !

3. Cryo Electron Microscopy Structures

Driving force for innovation in protein structure prediction - CASP

CASP : Critical Assessment of Structure Prediction double blind prediction of protein structures First CASP experiment : 1994

Driving force for innovation in protein structure prediction - CASP

CASP : Critical Assessment of Structure Prediction double blind prediction of protein structures First CASP experiment : 1994

Long-standing in CASP : Improvement over template

Predictions from all groups: from CASP assessors' talk : 2004

What makes high resolution refinement hard ?

Large number of degrees of freedom

The energy landscape is littered with local minima

Very narrow radius-of-convergence to native structure

Dill et al Nat. Str. Biol (1997)

NH₃

How do we diversify ?

How do we diversify ?

By aggressively rebuilding parts of the structure

How do we diversify ?

By aggressively rebuilding parts of the structure

Which parts are chosen for rebuilding ?

How do we diversify ?

- By aggressively rebuilding parts of the structure
- Which parts are chosen for rebuilding ?
- Highly varying regions in the starting structures
 Poorly packed region in the starting structures

Local Optimization

- Stochastically choose a residue on the protein
- Perturb the backbone at that position
- Rearrange the side chains
- Minimization
- Metropolis Monte-Carlo

Bradley et al Science (2005)

diversification movie

local optimization movie

SH3 domain of ABL Tyr kinase - all beta fold

Qian, Raman, Das et al Nature (2007)

SH3 domain of ABL Tyr kinase - all beta fold

Qian, Raman, Das et al Nature (2007)

SH3 domain of ABL Tyr kinase - all beta fold

Qian, Raman, Das et al Nature (2007)

Acyl-CoA inhibitor - all alpha fold

Acyl-CoA inhibitor - all alpha fold

Acyl-CoA inhibitor - all alpha fold

CASP7 target T380

MOLPROBITY score - model quality

	% rotamer outliers		% ramachandran outliers	
	NMR	Refined	NMR	Refined
2abd	19	0	9	0
Ibmw	30	0	9	0
lkot	25	l	4	0
lab7	22	0	4	0
la24	47	2	7	0
lafh	14	0	2	0
Ixpw	6	0	2	0
2sob	29	0	10	0
lezy	8	0	0	0
lawo	13	0	I	0

Davis et al NAR (2007)

Driving force for innovation in protein structure prediction - CASP

CASP : Critical Assessment of Structure Prediction double blind prediction of protein structures First CASP experiment : 1994

Long-standing in CASP : Improvement over template

Driving force for innovation in protein structure prediction - CASP

CASP : Critical Assessment of Structure Prediction double blind prediction of protein structures First CASP experiment : 1994

Long-standing in CASP : Improvement over template

The X-ray crystallographic phase problem

map

The X-ray crystallographic phase problem

Molecular replacement model

When is the protein folding problem solved ?

"There is an obvious method of evaluation that will allow any structure prediction method to be assessed.

It is simply to demand that the method produce a model that can be used to solve the corresponding crystal structure by **molecular replacement**"

- Gregory A. Petsko, Genome Biology (2000)

NMR : Acyl-CoA inhibitor

RED STICKS : High resolution X-ray structure Qian, Raman, Das et al *Nature* (2007)

NMR : Acyl-CoA inhibitor

Electron density map from starting NMR model

RED STICKS : High resolution X-ray structure Qian, Raman, Das et al *Nature* (2007)

NMR : Acyl-CoA inhibitor

Electron density map from starting NMR model

Electron density map from refined model

RED STICKS : High resolution X-ray structure Qian, Raman, Das et al Nature (2007)

Homology model : CASP target T385

Electron density map from starting template

RED STICKS : High resolution X-ray structure

Electron density map from refined model Bin Qian

McCoy et al J. Appl. Cryst. (2007)

Molecular replacement with an ab-initio model ?

Molecular replacement with an ab-initio model ? CASP7 target T0283

I.4 A RMSD

RED : PDB coordinates from crystal structure solved by experimental phasing BLACK : Electron density map using phases from ab-initio Rosetta model

Rhiju Das

Joosten et al Acta Cryst.D (2008)

Conclusions

- Significant advance the problem is far from being fully solved
- Conformation space sampling the limiting factor
- Computational methods + limited
 experimental data = faster, accurate models
- Structural Genomics covering protein fold refining homology models will be all important

Acknowledgments

David Baker

STRUCTURE PREDICTION TEAM

Bin Qian Rhiju Das Phil Bradley Chu Wang James Thompson **Rob Vernon** Will Sheffler Liz Kellogg Frank DiMaio Oliver Lange Mike Tyka David Kim rest of the Baker lab

COMPUTING RESOURCES

- Rosetta@HOME distributed computing volunteers
- IBM Blue Gene T. J. Watson Research Center, Yorktown Heights, NY
- Argonne Leadership Computing Facility, Argonne National Lab, Chicago, IL
- San Diego Supercomputer Center, San Diego, CA
- National Center for Supercomputing Applications, Urbana, IL

The Protein Folding Problem

GTPDIIVNAQINS EDENVLDFIIEDE YYLKKRGVGAHII KVASSPQLRLLY KNAYSTVSCGNY GVLCNLVQNGEY DLNAIMFNCAEIK LNKGQMLFQTKI WR

The Protein Folding Problem

GTPDIIVNAQINS EDENVLDFIIEDE YYLKKRGVGAHII KVASSPQLRLLY KNAYSTVSCGNY GVLCNLVQNGEY DLNAIMFNCAEIK LNKGQMLFQTKI WR

Solve one, get them all !

- Evolutionarily related proteins generally same protein fold
- One structure per sequence family or subfamily rest by HOMOLOGY MODELING
- Use known structure as template

Vitkup et al Nat. Str. Mol. Biol. (2001), Sellers et al Proteins (2008)

Solve one, get them all !

- Evolutionarily related proteins generally same protein fold
- One structure per sequence family or subfamily rest by HOMOLOGY MODELING
- Use known structure as template

Vitkup et al Nat. Str. Mol. Biol. (2001), Sellers et al Proteins (2008)

NMR structures and homology models

	NMR structure	Homology model
resolution	generally low (insufficient data)	generally low (depending on seq. similarity)
starting model	ensemble (multiple structures satisfying data)	ensemble (multiple homologs to the target seq.)
core packing	generally poor	generally poor
distance to high res. crystal structure	I-3 A	2-5 A