Solution- and Adsorbed-State Ensembles of Biomineralization Proteins with RosettaSurface

David Masica: Gray Lab, Johns Hopkins University

Unpublished & Confidential

Funded by the Beckman Foundation

Statherin and Hydroxyapatite (HAp): an Evolved Protein-Surface Interaction

Statherin inhibits the growth of HAp crystals

In bone and tooth c=0.69nm **C-Terminus** 0_a)₆(b=1.88nm **N-Terminus** -d10(P

HAp is the primary component

a=0.94nm

Goobes, G. et al., *Proceedings of the National Academy of Sciences* **103** (44), 16083 (2006).

The iPOT (interstice of the Phosphate-Oxygen Triad) Motif: a Plausible Molecular Recognition Site Ca₁₀(PO₄)₆(Oℍ)₂

Makrodimitris, K.; Masica, D. L.; Kim, E.; Gray, J. J.; J. Am. Chem. Soc. 2007, 129, 13713-13722.

- Do solution- and adsorbed-state protein folds differ significantly?
- Can RosettaSurface accurately fold a protein on a surface starting from an extended chain?
- Can a combined RosettaSurface-NMR protocol solve a protein structure on a surface?
- Specific or promiscuous binding?

- Do solution- and adsorbed-state protein folds differ significantly?
- Can RosettaSurface accurately fold a protein on a surface starting from an extended chain?
- Can a combined RosettaSurface-NMR protocol solve a protein structure on a surface?
- Specific or promiscuous binding?

- Do solution- and adsorbed-state protein folds differ significantly?
- Can RosettaSurface accurately fold a protein on a surface starting from an extended chain?
- Can a combined RosettaSurface-NMR protocol solve a protein structure on a surface?
- Specific or promiscuous binding?

- Do solution- and adsorbed-state protein folds differ significantly?
- Can RosettaSurface accurately fold a protein on a surface starting from an extended chain?
- Can a combined RosettaSurface-NMR protocol solve a protein structure on a surface?
- Specific or promiscuous binding?

Flow Chart

Centroid

Full Atom

Key features

- Start from linear backbone
- Solution- and adsorbedstate decoys
- Decision to create encounter complex is random

Energy Fcn

•
$$W(R_g) = 0$$

- Self electrostatics
- Final discrimination by nonweighted physical potential

Flow Chart

Centroid

Full Atom

Key features

- Start from linear backbone
- Solution- and adsorbedstate decoys
- Decision to create encounter complex is random

Energy Fcn

•
$$W(R_g) = 0$$

- Self electrostatics
- Final discrimination by nonweighted physical potential

Flow Chart

Centroid

Full Atom

Key features

- Start from linear backbone
- Solution- and adsorbedstate decoys
- Decision to create encounter complex is random

Energy Fcn

- $W(R_g) = 0$
- Self electrostatics
- Final discrimination by nonweighted physical potential

Solution-State

Adsorbed-State

Solution-State -> Adsorbed-State

Folding Event Around Glycine 12

R13 anti-parallel to binding motif

R13 parallel to binding motif

A Control: the Schematic

Predicted helical fold stabilized by electrostatic interactions

Marqusee, S. et al., Proceedings of the National Academy of Sciences (1989).

A Control: Statistics from the Top 100

A Control: Representative Structures

Comparison with High-Resolution Solid-State NMR Measurements, for the Statherin-HAp System

Comparison with High-Resolution Solid-State NMR Measurements, for the Statherin-HAp System

Biased Simulation:

Enforcing Two NMR Constraints Created Clashes

Specificity?

Conclusion

- RosettaSurface suggests that statherin undergoes moderate structural change upon binding
- RosettaSurface captures many molecular and atomic features of the statherin-HAp system, and can do so beginning from a fully-extended chain in solution
- A Combined NMR-RosettaSurface protocol may prove useful for determining protein-structures at interfaces
- Similar structures result when adsorbing statherin to the 001, 010, and 100 faces of HAp

Do Proteins Interact with Inorganic Materials in Nature?

Clashes Created Satisfying Some NMR Constraints

Simulate Protein-Surface Interactions?

- Why not
 - No structural models solved by experiment, i.e.
 NMR or crystal structures. Therefore, no training sets and no benchmarks!
- Why
 - Simulation provides the ONLY means of solving the structure of a protein adsorbed to a solidsurface

Why a Second Statherin-HAp Study?

- No other system has been the subject of as many high-resolution solid-state NMR studies; 15 measurements to date.
 - 3 protein-surface intermolecular
 - 7protein intramolecular
 - 5 protein backbone torsion angles