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Statherin and Hydroxyapatite (HAp):
an Evolved Protein-Surface Interaction

Statherin inhibits the growth of HAp is the primary component
HAp crystals In bone and tooth

C-Terminus

Goobes, G. et al., Proceedings of the National Academy of Sciences 103 (44), 16083 (2006).



The IPOT (interstice of the Phosphate-Oxygen Triad)

Motif: a Plausible Molecular Recognition Site
Ca,o(PO,)(OMH),

- s ¥

Makrodimitris, K.; Masica, D. L.; Kim, E.; Gray, J. J.; . Am. Chem. Soc. 2007, 129, 13713-13722.




Key Questions

* Do solution- and adsorbed-state protein folds
differ significantly?



Key Questions

 Can RosettaSurface accurately fold a protein
on a surface starting from an extended chain?



Key Questions

 Can a combined RosettaSurface-NMR protocol
solve a protein structure on a surface?



Key Questions

e Specific or promiscuous binding?
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Flow Chart
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Secondary Structure by Type
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Solution-State -> Adsorbed-State
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Folding Event Around Glycine 12

R13

Solution-state 15mer Superposed Solution-
N-terminal binding domain and adsorbed-state
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A Control: the Schematic

Predicted helical fold stabilized
by electrostatic interactions

Marqusee, S. et al., Proceedings of the National Academy of Sciences (1989).



A Control: Statistics from the Top 100
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A Control: Representative Structures




Comparison with High-Resolution Solid-State NMR
Measurements, for the Statherin-HAp System
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Comparison with High-Resolution Solid-State NMR
Measurements, for the Statherin-HAp System
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Enforcing Two NMR Constraints Created Clashes
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Specificity?
Ca,o(PO,)(OMH),
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Conclusion

RosettaSurface suggests that statherin undergoes
moderate structural change upon binding

RosettaSurface captures many molecular and
atomic features of the statherin-HAp system, and
can do so beginning from a fully-extended chain
in solution

A Combined NMR-RosettaSurface protocol may
prove useful for determining protein-structures
at interfaces

Similar structures result when adsorbing
statherin to the 001, 010, and 100 faces of HAp



Do Proteins Interact with Inorganic
Materials in Nature?

7V

- Silica

| —r

: e

Hydroxyapatite Calcite/Aragonite

Magnetite




Clashes Created Satisfying Some NMR Constraints
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Simulate Protein-Surface Interactions?

 Why not

— No structural models solved by experiment, i.e.
NMR or crystal structures. Therefore, no training
sets and no benchmarks!

e Why

— Simulation provides the ONLY means of solving
the structure of a protein adsorbed to a solid-
surface



Why a Second Statherin-HAp Study?

* No other system has been the subject of as
many high-resolution solid-state NMR studies;
15 measurements to date.

— 3 protein-surface intermolecular
— 7protein intramolecular
— 5 protein backbone torsion angles



