A Framework for Understanding Rosetta

Xavier Ambroggio

→ Origin of Rosetta

- Introduction to Basic Rosetta Methodology
- → Overview of Rosetta Implementation

Rosetta: an algorithm for *ab initio* structure prediction

PROTEINS: Structure, Function, and Genetics Suppl 3:171-176 (1999)

AB INITIO: PREDICTION REPORTS

Ab Initio Protein Structure Prediction of CASP III Targets Using ROSETTA

Kim T. Simons,¹ Rich Bonneau,¹ Ingo Ruczinski,² and David Baker^{1*} ¹Department of Biochemistry, University of Washington, Seattle, Washington ²Department of Statistics, University of Washington, Seattle, Washington

Critical Assessment of Techniques for Protein Structure Prediction

protein folding problem

CASP

CASP8

Functional expansion of Rosetta algorithms

Introduction to Basic Rosetta Methodology

- → States & State Changes
- → Scoring Functions
- → Search & Optimization Routines
- → Output

States Used in **Rosetta** State = Discrete Conformational Unit

States & State Changes

→ sequences

- → static state for folding & loop modeling
- → amino acid substitutions in parallel design
- → rotamers
- → dihedrals
- → fragments
- → ligands
- → protein subunits
- →pose & fold trees

Rotamers

States for full-atom scoring and design

rotamers (rotational isomers):

- highly populated combinations of sidechain dihedral angles.
 - low energy side-chain conformations.
- a small library of about 100-150 rotamers can cover 96-97% of the conformations found in protein structures.

Dunbrack rotamer libraries:

Backbone dependent and independent libraries.

rosetta_database/bbdep02.May.sortlib

rotamer move = substitution

Dihedrals States used in most protocols

Small scale dihedral moves (i.e. refinement, minimization)

- → Random torsion angle perturbation

 - "shear" = randomly perturb phi, equal & opposite perturbation to preceding psi
- → fragment insertion
- rapid torsion angle optimization to offset global perturbations
 - "wobble" = continuous variation of phi, psi near perturbation to minimize downstream MSD
- ➡ gradient descent = dE / dPhi,Psi evaluated, followed by...
 - → linmin (line searches):
 - → find minimum in direction of steepest descent and stop
 - → not the best way to explore a complex landscape
 - → dfpmin (Davidson, Fletcher, Pal quasi-Newton method):
 - → the core minimization routine
 - ➡ iterations of moves and derivative calculations
 - → smarter than steepest descent

Fragments → definition → fragment moves

Fragments

States for ab initio and loop modeling

- → 3 and 9 residue fragments
- → database created from crystal structures
 - → < 2.5Å resolution</p>
 - → < 50% sequence identity
- ➡ rosetta_fragments/nnmake_database/vall.dat.2006-05-05
- → custom fragment database possible
- → low resolution modeling
 - → centroid representation of side chains

Augura and

Making Fragment Libraries Overview

- → Fragments are selected from database and ranked according to:
 - → input amino acid sequence
 - ➡ FASTA format
 - → *possible* to use only secondary structure information
 - → secondary structure predictions
 - ➡ programs
 - → PSI-PRED
 - → default and predictions carry largest weight
 - → JUFO
 - → SAM
 - ➡ PROF
 - \rightarrow more = better
 - → manual

Note: we are leaving "Rosetta"

Fragment Moves

Fragment insertion

- conformation modification occurs in torsion space
- ➡ small changes in dihedrals
 - "chuck" = fragments that result in MSD of atoms below threshold randomly inserted (Cartesian)
 - "Gunn" = fragments that result in translation & rotation below threshold are randomly inserted (independent of coordinate system)

Ligand Moves

analog of protein design with flexible backbone (& docking)

Pose & Fold Trees Methodological Inconvenience

Rosetta folding

Sampling and minimization in TORSIONAL space

Sampling and minimization in RIGID-BODY space

Rosetta docking

Pose & Fold Trees Fold tree representation

Allows simultaneous optimization of rigid-body and backbone/sidechain torsional degrees of freedom.

Construct fold-trees to treat a variety of protein folding and docking problems.

Bradley and Baker, Proteins 2006

Energy Functions

- → purpose: score states
- → major classes
 - → low resolution
 - → high resolution

Major Classes of Energy Functions

→ Low resolution: reduced atom representation

- → simplified energy function
- → used for aggressive search of state space

→ High resolution: full-atom representation

- → detailed energy function
- → local search of state space
- → refinement and minimization

Atom Model

centroid reduction of side chains

Energy function terms

van der Waals repulsion

"pair" terms (electrostatics)

residue environment (prob of burial)

2º structure pairing terms (H-bonds)

radius of gyration

packing density

In general ...

Weighted linear combination

 $Energy = w_1^* term_1 + w_2^* term_2 + \dots$

Pair-wise decomposable

Heavily trained on PDB statistics

Discriminate "near native" vs "non native"

No single low resolution score

Several functions with different weights

Low resolution:

slide content credits: Glenn Butterfoss

High resolution:

Atom Model

full atom representation

Energy function terms

Rotamer (Dunbrack)

Ramachandran

Solvation (Lazaridius Karplus)

Hydrogen bonding

Lennard-Jones

Pair (electrostatic)

Reference energies

In general ...

Weighted linear combination

 $Energy = w_1^* term_1 + w_2^* term_2 + \dots$

Pair-wise decomposable

Pre- tabulate energies

Hybrid Statistical / MM-like score

Weights trained for different applications

slide content credits: Glenn Butterfoss

Search and Optimization

- → size of state spaces
- → algorithm(s)
 - ➡ Monte Carlo
 - → simulated annealing
 - → Metropolis

Approximate size of different state spaces

- → Folding: given either alpha, beta, or loop conformation, for protein of nres, 3^{nres} possible conformations.
 - → Levinthal paradox (*Cyrus Levinthal, J. Chim. Phys. 65, 44; 1968*):
 - → If *nres* = 100, sampling a conformation every 10^{-13} seconds, it would take 10^{27} years to fold. Universe is 10^{10} years old.
 - → Folding is non-random and cooperative.
- → Design:
 - \rightarrow for protein of *nres*, 20^{nres} possible sequences
 - \rightarrow given 10 rotamers per fixed amino acid, 10^{nres} possible states
- \rightarrow **Docking**: 360³ x Angstroms³ (for 10 Angstroms, 4.6 x 10¹⁰ states)
- → etc.

Basic Rosetta optimization algorithm Monte Carlo search Simulated Annealing & Metropolis

= acceptance criterion

Rosetta methodology in real time

NOTE: <u>MOVIES REPRESENT SINGLE TRAJECTORIES</u> typical simulation involves 100-100000 trajectories

- → <u>ab initio movie</u>
- → docking movie

Overview of Rosetta output

- →decoys and funnels
- Computational power versus accuracy
- ➡constraints
- ⇒filters

Funnels: decoy RMSD to native versus energy 1 decoy/point = 1 trajectory

Similar energy landscapes for Rosetta predictions:

- energy function accurately scores states
- models can be selected by energy/score only

slide content credits: Ora Furman-Schueler Ken Dill Phil Bradley Kristian Kaufmann

Constraint: user input limitation of state space search

constraint methodology

- violation of a constraint increases the decoy score
- Implemented through files (.cst, .dpl, .dst)

types of constraints

- → mainly apply to *ab initio* mode
- ➡ NMR derived dipolar coupling constraints
- → barcode constraints (features like ss, phi/psi, etc.)
- → distance constraints (docking)

→ future expansion to other modes

Filters: absolute constraints

- ➡ filter methodology
 - ➡ violation causes decoy to be discarded
 - → implemented through command line options
- ➡ physical attributes
 - ➡ disulfides
 - → knot
 - ➡ SASA
 - → vdw
 - → radius of gyration
 - ➡ score
 - → etc.

Overview of Rosetta Implementation

- Implementation Details of Select Modes
- ➡ Brief Description of Select Modes
 - → Loop Modeling Protocols
- ➡ Introduction to the Rosetta command line
- → Flow-chart of Rosetta Execution

Brief Description of Select Modes								
mode	description	main flag(s)	main code					
ab initio	predict the structure from sequence	none (original mode) -abrelax	fold_abinitio.cc					
relax	refine the structure using Rosetta energy functions	-relax	relax_structure.cc					
idealize	replace bond geometries with ideal values	-idealize	idealize.cc					
loop modeling	build and refine local structurally variable regions in context of a structural template	-loops	fold_loops.cc					
design	optimize sequence given a structure	-design	design_structure.cc					
docking	structure prediction for a protein-protein complex given subunits	-dock	dock_structure.c docking.cc					
ligand	ligand docking, design	-ligand	ligand.cc					
interface	ddG calculation for mutations made across a complex interface	-interface	analyze_interface_ddg.cc					
scoring	score input conformations with Rosetta energy functions	-score	scorefxns.cc					
domain assembly	fixed domains connected by variable regions	-assemble	assemble_domains.cc					
pose	a set of algorithms which improve previous implementations	-pose -pose_*	pose_*.cc					

Brief Description of Select Modes								
mode	d	Loop modeling protocols						
ab initio	p	Protocol	Reference	Genera	characteristics	Di	ffering input files	
relax		"Classical"	Carol Rohl et al. <i>Proteins</i> 2004.	classical <i>ab initio</i> fragment insertion with minimization		(1pdbC.ssa) - secondary structure assignments 1pdb.loops		
idealize						- loop library		
loop modeling		"Pose-based"	Chu Wang et al. <i>JMB</i> 2007	+ explicit cyclic coordinate descent for loop closure		1pdbC.pose_loops - loop definitions and options		
design docking		"Loop relax"	Bin Qian et al. <i>Nature</i> 2007	+ full ator	+ full atom minimization		<pre>lpdbC.loopfile - loop definitions</pre>	
ligand	d li	"Termini"	Sood et al. <i>JMB</i> 2006	centroid b protein te	based extension of rmini	1pdbC.loops - special loop library		
interface	d co	"Loop design"	Xiaozhen Hu et al. <i>PNAS</i> 2007	specialize backbone	ed flexible e design	(custom method and inputs, stay tuned)		
scoring	sc fui	score input conformations with Rosetta ener functions		a energy	-score		scorefxns.cc	
domain assembly	fix	fixed domains connected by variable regions			-assemble		assemble_domains.cc	
pose	a : im	a set of algorithms which improve previous implementations		-pose -pose_*		pose_*.cc		

Introduction to the Rosetta command line

UNIX-like: executable -flags e.g. ls -a

