SIMULATING PROTEIN FLEXIBILITY WITH THE BACKRUB MOTION

COLIN A. SMITH UCSF KORTEMME & JACOBSON LABS WEDNESDAY, JULY 23 ROSETTACON 2008

OVERVIEW BACKGROUND NEW APPLICATIONS MINIATURIZATION

Structure 14, 265–274, February 2006 © 2006 Elsevier Ltd All rights reserved DOI 10.1016/j.str.2005.10.007

The Backrub Motion: How Protein Backbone Shrugs When a Sidechain Dances

Structure 14, 265–274, February 2006 © 2006 Elsevier Ltd All rights reserved DOI 10.1016/j.str.2005.10.007

The Backrub Motion: How Protein Backbone Shrugs When a Sidechain Dances

ROTATION AROUND AN AXIS DEFINED BY 2 Cα ATOMS (i-1, i+1) COMPENSATING ROTATION AROUND (i-1, i) AND (i, i+1) AXES

GENERALIZATION

À GENERALIZED BACKRUB MOVE IS A CONTINUOUS ROTATION AROUND A SINGLE AXIS

PREDICTING POINT MUTANT SIDECHAINS

Point Mutant χ Angle Prediction

TRIOSEPHOSPHATE ISOMERASE LOOP 6 SIMULATIONS

- 11 RESIDUE LOOP THAT MAINTAINS THE SAME INTERNAL CONFORMATION IN OPEN AND CLOSED STATES
- REASON: EXCLUDE WATERS AND AVOID TOXIC BYPRODUCTS
- SEVERAL RESIDUES MOVE OVER 7 Å
- OPENING/CLOSING ON THE 100 µs-ms time scale

Forced Open Open (IYPI) Closed (2YPI)

TRIOSEPHOSPHATE ISOMERASE LOOP 6 SIMULATIONS

1.5M STEP SIMULATION STARTING FROM OPEN CONFORMATION

PREDICTING BACKBONE FLEXIBILITY CALCULATED B-FACTORS: HIGH <-> LOW

TRAJECTORIES

Usage: bin/backrub.gccrelease [options] ONLINE HELP			
Option	Setting	Type	Description
in:path:	1	1 1	
database	~/miniros	(P)	Database file input search paths
in:file:	1	1 1	
S	1	(F)	Name(s) of single PDB file(s) to process
1	I	(F)	File(s) containing list(s) of PDB files to process
in:	I	1 1	
ignore_unrec	false	B	Do not abort if unknown residues are in PDB file
out:	1	1 1	
nstruct	1	I	Number of times to process each input PDB
packing:	I	1 1	
resfile	resfile	F	name of the resfile
backrub:	I	1 1	
pivot_residues	I	(I)	residues for which contiguous stretches contain segments
			(internal residue numbers, defaults to all residues)
pivot_atoms	I CA	(S)	main chain atoms usable as pivots
min_atoms	3	I	minimum backrub segment size (atoms)
max_atoms	34	I	maximum backrub segment size (atoms)
ntrials	I 1000	I	number of Monte Carlo trials to run
sc_prob	0.25	R	probability of making a side chain move
sc_prob_uniform	0.1	R	probability of uniformly sampling chi angles
mc_kt	I 0.6	R	value of kT for Monte Carlo
mm_bend_weight	1	R	weight of mm_bend bond angle energy term

CONTINUOUS SIDE CHAIN SAMPLING

- ROTAMER WELLS ARE CHOSEN ACCORDING TO THE DUNBRACK PROBABILITY
- CHI-ANGLES ARE SAMPLED FROM A GAUSSIAN DISTRIBUTION WITH THE DUNBRACK STD. DEV.
- RARE CONFORMATIONS CAN BE SAMPLED THROUGH OCCASIONAL UNIFORM CHI-ANGLE SAMPLING
- PROLINE IS NOT SAMPLED

CLASS: protocols::moves::SidechainMover

Abagyan, R., & Totrov, M. (1994) J Mol Biol 235, 983-1002.

ATOM-CENTRIC BACKRUB

CLASS: protocols::moves::BackrubMover

- BACKRUBS CAN BE PERFORMED BETWEEN ANY ATOM IN THE ATOM TREE AND ONE OF ITS DIRECT DESCENDANTS
- **CONVENIENCE METHOD FOR BACKBONE SEGMENTS:**

BackrubMover::add_mainchain_segments(
 vector1<Size> resnums,
 vector1<string> atomnames,
 Size min_atoms,
 Size max_atoms)

BRANCH ANGLE OPTIMIZATION

- CLASS: protocols::branch_angle::BranchAngleOptimizer
- QUADRATIC COEFFICIENTS DETERMINED USING AN EXTERNAL R SCRIPT:
 - RUN BranchAngleOptimizer PROTOCOL
 - **RUN R SCRIPT:**

> source("<mini>/external/R/BranchAngleOptimizer.R")
> process_database("<minirosetta_database>")

```
minirosetta_database/
branch_angle/
branch_angle_1.txt
branch_angle_2.txt
branch_angle_1_undefined.txt
branch_angle_2_undefined.txt
branch_angle_1_user.txt
branch_angle_2_user.txt +
```


CAVEATS

PERFORMANCE: ENERGY EVALUATION FOR SIDE CHAIN AND BACKBONE SAMPLING NOT AS EFFICIENT AS IT COULD BE

SAMPLING IN THE CONTEXT OF JUMPS DOES NOT NECESSARILY DO WHAT YOU WANT

BOND ANGLE POTENTIAL LIMITED TO CHARMM WHICH DISAGREES WITH ROSETTA/PDB IDEAL BOND ANGLES

WHAT IS ROOM TEMPERATURE IN ROSETTA?

THANKS

KORTEMME LAB TANJA GREG FRIEDLAND ANTHONY LINARES ELISABETH HUMPHRIS DAN MANDELL MARIANA BABOR BRADLEY LAB PHIL

KUHLMAN LAB DOUG RENFREW

BAKER LAB ANDREW LEAVER-FAY

JACOBSON LAB MATT JEREMY NILMEIER

GENENTECH SCHOLARS PROGRAM DEPARTMENT OF DEFENSE NDSEG NSF SYNTHETIC BIOLOGY ENGINEERING RESEARCH CENTER