PathRover - Sampling Protein Motion in an Energy Maze

Barak Raveh - Furman Lab

Hadassah Medical School, Hebrew University, Jerusalem School of Computer Science, Tel-Aviv University

Joint work with Angela Enosh, Nir Ben-Tal and Dan Halperin

Rosetta Conference, 2008

PathRover - From Structure Prediction to Motion Prediction in Rosetta

From Protein Structure to Protein Motion

Bad news: experimental methods for observing protein motion in high-resolution are still a dream

Good news: there's some hope

- Nano-labeling with gold particles
- Spectroscopic Methods
 - RDC, PRE, FRET, SAXS, etc.
- Homologues & Alternative Conformations

Outline

- Introduction to Sampling-Based Motion Planning
- Some Results
- Conclusions and Future Work

Motion Planning Techniques – From Robots to Molecules

Robot Motion Planning: Given a *robot* with *k* degrees of freedom, in an environment with *obstacles*, find a *collision free path* from an initial state to a goal state

•*Robot* → peptide chain

•Obstacles → steric clashes between atoms

•*Collision-free path* → a lowenergy **motion pathway**, free of steric clashes

Sampling Motion Paths in the Energy Landscape

Feasible and Forbidden Space

$C_{\text{forbid}} = _{\text{Energy} > \text{Threshold}}$

e.g., conformations with steric clashes or conformations with poor solvation

 $C_{\text{feasible}} = \text{Energy} < \text{Threshold}$

e.g., clash-free conformations

http://www.dillgroup.ucsf.edu

Rapidly-exploring Random Trees (RRT)

Mapping the feasible conformation space (LaValle & Kuffner, 2001,

Sampling-Based Motion-Planning – Some Previous Work

- Protein folding pathways Amato, Dill & Song, 2003
- Protein loop motion Cortés, Siméon, Remaud-Siméon and Tran, 2004
- Large-amplitude conformational changes Cortés, Siméon et al., 2005
 - Integration with Normal-Mode Analysis Kirillova, Cortés, Stefaniu and Siméon, 2008
- Ligand binding Singh, Latombe and Brutlag, 1999; Cortés, Jaillet and Siméon, 2007
- Motion of transmembrane helices Enosh, Fleishman, Ben-Tal & Halperin, 2007

Outline

- Introduction to Sampling-Based Motion Planning
- Some Results
- Conclusions and Future Work

Case Study I: Modeling the Motion of the Transmembrane Potassium Channel KcsA

(Enosh, Raveh, et al., J Biophysics - to appear)

Open state = an homology model of the *KvAP* channel

KcsA Channel

Definition of Flexible Regions for

- Flexible structural alignment (FlexProt*)
- Constant part: 0.3Å deviation only Flexible part: 104 backbone degrees of freedom + sidechains

Additional Tools:

- Comparison of phi / psi values
- Hinge-Prediction Tools (elastic-network models, etc.)

Technical Run Details for KcsA

- 100 paths generated from 12 independent runs
 - Running time: ~1 hour for each run on a single CPU
 - Tested ~50,000 conformations in each run
 - Added ~30,000 valid conformations to each tree
- Final output path of 23 conformations
- Energy Function
 - Full-atom *score12*, excluding solvation & pair terms
 - Mainly prevents clashes
 - Should be compared to a membrane-tailored scoring function (e.g., Barth, Schonbrun and Baker, PNAS 2007)

KcsA Channel

Result: KcsA Motion Prediction

Three-Phase Safe-Lock Mechanism? <u>unlock → open → relock</u>

Energy Along Pathway (score12 without solvation & pair terms)

Radius of Pore Opening during Simulation (HOLE program)

Z-axis

Three-Phase Safe-Lock Mechanism? unlock → open → relock

Following a short phase of Brownian motion (*grey*):

Unlocking from closed state by a slight clockwise movement.

Opening: the inner helices slide over each other, moving counter-clockwise and laterally away from the pore axis.

Locking in the open conformation by a counter-clockwise motion.

Domain Swapping

Case Study II: Domain Swapping – Oligomerization Mechanism

(Raveh, Enosh et al., Submitted)

Domain Swapping

Cyanovirin-N Domain Swapping (Full-atom mode, Score12)

Flexible Alignment^{*}, Normal-Mode Analysis^{**} → one central hinge loop

* Shatski et al., *Proteins* 2002 **Emeki et al., *Proteins* 2008 The central hinge loop does not allow domain swapping (only in full-atom mode!)

Domain Swapping

Cyanovirin-N Domain Swapping - Two Additional Hinge Loops Allow the Phi / Psi comparison Motion

Cyanovirin-N Domain Swapping -Two Additional Hinges Allow the

Conclusions from Cyanovirin-N domain swapping example:

•Certain degrees of freedom may be the key to protein motion

•Not surprisingly, side-chains may play a crucial role in "locking" the protein

Incorporation of Prior Information Constraints in PathRover

(Raveh, Enosh et al., Submitted) Experimental Knowledge / Expert Intuition / etc.

Incorporation of Partial Information Contributes to Predictions

CesT domain swapping in centroid mode using partial information about homologue SigE

Conclusion from CesT domain swapping example:

- A certain amount of partial information may contribute to predictions
- The energy function prevents over-biasing towards partial information

Outline

- Introduction to Sampling-Based Motion Planning
- Some Results
- Conclusions and Future Work

Sampling-based Motion Planning - Conclusions

- Generation of collision-free lowenergy motion pathways
 - Fast: minutes (centroid mode) to hours (full-atom mode) per run
 - Partial information constraints may guide towards correct solutions
- Additional validation is still needed

Rosetta PathRover – Back to the future

- Incorporating "classical" Rosetta moves
 - Fragment insertion
 - Backrub
 - Loop-closure
 - Etc.
- Experimental validations of predictions
 - Spectroscopic methods
 - Mutation analysis of transition conformations
- Application to Types of Protein Motion:
 - Protein-Peptide Interactions
 - Docking
 - Allostery
 - etc.

Mapping the Conformation Space \rightarrow Sampling with Memory?

Acknowledgements

- Angela Enosh
- Nir Ben-Tal (KcsA)
- Ora Schueler-Furman & co.
- Dan Halperin & co.
- All Rosetta Developers

Thank You

Conceptual Difference from Molecular Dynamics

Force Calculations

Energy Considerations

Side-chain movements

Torsion angle movements

Previous Work K⁺ channels

Biggin and Sansom (2002) - steered molecular dynamics.

Tikhonov and Zhorov (2004) - Monte-Carlo simulation.

Shrivastava and Bahar (2006) - Gaussian network method. channel opening follows a corkscrew motion of the intracellular regions of the channel.

Shimizu et at. (2008) - single molecule studies. Rotational mechanism of the intracellular ends of TM2.

Coarse Experimental Validation for Circular Motion (Shimizu et al., Cell 2007)

Movie – CesT simulation with Atom-Distance Constraint

Movie – CesT simulation with Helix-Orientation Constraint

Helix-Angle and Helix-Distance

Ribose-binding Protein: Triple-Hinge = Problems?

Triple Hinges – Partial Information can Force Coordinated Motion

Sampling with RRT for Peptide Docking (See poster on peptide docking)

a		Partial Data	(i)		(ii) [†]		(iii)	(iv)	(V)
	Evaluated on			LLD	LLA ^{††}	CMD			
	Start Conformation (CesT)		39.1	25.1	91°	47.2	13.8	7.8	13.8
	Target Conformation (SigE)		6.1	8.8	279°	15.0	0	0	0
	Final Conformation		6.1	8.6	275°	11.1	1.2	1.2	1.8
b	RMSD to Final Conf.	SigE	<u>6.7</u>		5.3		3.6	8.2	3.2
		pseudo-monomer	8.9		<u>1.9</u>		<u>2.0</u>	<u>6.4</u>	<u>1.8</u>

† LLD / LLA = Least Mean Square Line Distance / Angle ; CMD = Center of Mass Distance †† LLA measured in angles