Working with Rosetta Funnels

RosettaCon2007 Workshop

Ora Schueler-Furman Hadassah Medical School The Hebrew University, Jerusalem, Israel

Overview

Introduction to Funnels

Funnels for model selection

- Example: entry of Anthrax into human cells
- FunHunt: characterization of native energy funnels in energy landscape
- Targeting of native funnels for docking and design

Summary

Overview

Introduction to Funnels

□Funnels for model selection

- Example: entry of Anthrax into human cells
- FunHunt: characterization of native energy funnels in energy landscape
- Targeting of native funnels for docking and design

Summary

Energy Landscape: Funnel around Native Structure

Funnels describe Folding and Binding

- RosettaDock high-resolution models are located at tip of funnel
- Model selection based on energy only

Similar Landscapes for Different Rosetta Predictions

Energy function describes well principles underlying the correct structure of monomers and complexes

Schueler-Furman et. al (2005) Science

Anthrax with Borden Lacy & John Collier, HMS

Introduction to Funnels

□Funnels for model selection

- Example: entry of Anthrax into human cells
- FunHunt: characterization of native energy funnels in energy landscape
- Targeting of native funnels for docking and design

Summary

Entry of LT Anthrax Toxin

Lethal Factor (LF) binds to Protective Antigen (PA)

Two possibilities – which is correct?

RosettaDock Suggests Still Another Possibility.....

... that Agrees with Additional Experiments ...

Disulfide crosslinking

+ * N209 vs. Y108

* N209 *vs.* K110,Y118, Q132, S134, D136, Q228 * Y108 *vs.* S186

... that Agrees with Additional Experiments ...

Binding assay for charge-reversal mutations

... and Changes the Concept

LF binds to PA - Conclusions

LF binds to PA via Site I onlySite II is responsible for multimerization of PA

→ Purely energy-based prediction can reproduce experimental results and point at possible incorrect information

→ High-resolution prediction coupled with experimental data contributes to structural characterization of interface

FunHunt

Introduction to Funnels

- □Funnels for model selection
 - Example: entry of Anthrax into human cells
 - FunHunt: characterization of native energy funnels in energy landscape
 - Targeting of native funnels for docking and design

USummary

Energy Landscape: Many Funnels

Global search detects more funnels

□ Free monomer structure → backbone inaccuracies → TRUE funnel cannot be selected by energy or "funnel quality"

FunHunt: Feature-based Classification of Native Funnels

Dense sampling around orientation

 accounts for fluctuations

 improves signal detection

- Characterize each by set of features
- Define distinctive features

FALSE

TRUF

FunHunt Features (Selected by SVM Classifier)

FunHunt Performance

Successful classification

- ✓ 50/52 correctly predicted: top-ranking model is from TRUE Funnel
- ✓ 80% models correctly classified (TP+TN)

FunHunt is robust

✓ Leave1out (L10) ≈
Leave8out (L80)

CAPRI Targets

□ 12/12 - works

Target	Complex Type	Correct?	Accuracy	TRUE score	FALSE score	FALSE rmsd
T11	U-H(NMR)	\checkmark	88	-5.53	-7.11	10.79
T12	U-B	\checkmark	90	-9.28	-7.14	15.32
T13	U-B	\checkmark	88	-7.09	-6.93	18.73
T14	H-B	\checkmark	40	-14.37	-11.90	34.77
T15	B-B	\checkmark	10	-14.07	-8.87	9.09
T18	U-U	\checkmark	94	-6.63	-6.99	22.65
T19	H-B	\checkmark	74	-9.33	-6.74	15.45
T21	U-U	\checkmark	100	-6.32	-8.39	8.65
T24	U-H	\checkmark	100	-5.48	-8.09	16.53
T25	U-B	\checkmark	92	-7.04	-9.59	16.19
T26	U-U	\checkmark	100	-9.11	-6.65	12.56
T27	U-U	\checkmark	100	-6.66	-9.03	11.32

Location of Starting Orientation for Flexible Docking (Capri Target T18)

T18 failed with regular RosettaDock Backbone flexibility

-6 99

-6.63

94

necessary

22.65

- But Where?
- FunHunt can locate initial orientation and suggest region

Correctly predicted loop conformation

Red, orange – bour Green – unbound; Blue – model

Flexible Docking by Chu Wang et al.

Selection of Native Orientation from PATCHDOCK Models (CAPRI Target T25)

Original orientations from PatchDock, Schneidman-Druhovny et al

FunHunt as a Tool for Interface Design Selection

 Can FunHunt discriminate binders from nonbinders ?
35 Unlabeled designs

FunHunt - Conclusions

- FunHunt selects *native funnel* among funnels in RosettaDock energy landscape
 - Based on small set of features selected by SVM
- FunHunt locates regions that need modeling of backbone flexibility in RosettaDock
- FunHunt can be used for *interface design* selection

Acknowledgments Furman Lab Hebrew U Jerusalem, Israel □ Nir London Dan Reshef, Barak Raveh, Vered Fishbain & **Dana Attias** Rosetta Community Anthrax **Chu Wang**, David Baker UW Harvard Medical School Baker lab computer clusters □Borden Lacy □Jeff Gray John Collier JHU **SVM** □Asa Ben Hur Col. State □Yael Mandel

Technion

Miro: Catalan Landscape: The Hunter

Dataset of Protein Complexes

Set52: <70% seqid between both partners n=52</p>

Set32: <70% seqid between any partner n=32</p>

Enzy	me	– Inhibitor (EI) n=19/11
1ACB	UU	α-chymotrypsin/ Eglin C
1CGI	UU	lpha-chymotrypsinogen/ Pancreatic secretory trypsin inhibitor
1CHO	UU	lpha-chymotrypsin/ Ovomucoid 3 rd Domain
1PPE	ΒU	Trypsin/ CMT-1
2PTC	UU	β-trypsin/ Pancreatic trypsin inhibitor
1TAB	ΒU	Trypsin/ BBI
1AVW	UU	Trypsin/ Soybean trypsin inhibitor
1V5I	UU	Subtilisin BPN / Serine protease inhibitor POIA1
2SNI	UU	Subtilisin Novo/ Chymotrypsin inhibitor 2
2SIC	UU	Subtilisin BPN/ Subtilisin inhibitor
1BRS	UU	Barnase/ Barstar
1MAH	UU	Mouse Acetylcholinesterase/ Fasciculin 2
1UGH	UU	Human Uracil-DNA glycosylase/ Inhibitor
1DFJ	UU	Ribonuclease A/ Ribonuclease inhibitor
1STF	ΒU	Papain/ Stefin B
1BTH	UU	Thrombin mutant/ Pancreatic trypsin inhibitor
4HTC	ΒU	lpha-Thrombin/Hirudin
1TMQ	UU	lpha-amylase/ RagI inhibitor
1TE1	UU	Xylanase/ XIP-I inhibitor
Antik	bod	y – Antigen (Ab-Ag) n=9/1
1BVK	UU	Fv/ Lysozyme
1MLC	UU	IgG1 D44.1 Fab fragment/ Lysozyme
1WEJ	UU	Fab fragment/ Cytochrome C
1AHW	UU	5G9/ Tissue factor
2JEL	ΒU	Jel42 Fab Fragment/ A06 Phosphotransferase
1NCA	ΒU	Fab NC41/ Neuraminidase
1EO8	ΒU	Bh151 Fab/ Hemagglutinin
1IAI	ΒU	IgG1 Idiotypic Fab/ Igg2A Anti-Idiotypic Fab
1IGC	ΒU	IgG1 Fab Fragment/ Protein G

OTHER n=24/20			
1AK4	UU	Cyclophilin/ N' domain of HIV1 capsid	
1EER	UU	Erythropoietin/ erythropoietin receptor	
1Z8U	UU	α -hemoglobin/ α -hemoglobin stabilizing protein (AHSP)	
1FQJ	UU	Rgs9 (rgs domain)/ gt-i1 chimera alpha unit	
1GOT	υυ	Transducin Gt- α , Gi- α chimera/ Gt- β - γ	
1GUA	UU	Rap1/ Raf1 (ras binding domain)	
1I4D	UU	Arfaptin/ Rac1	
1HE1	υυ	ExoS gap domain/ Rac1	
1ATN	BU	Actin/ Deoxyribonuclease I	
2BTF	ΒU	β-actin/ Profilin	
1NMU	UU	MBP/ L30	
<mark>1S1Q</mark>	UU	TSG101(UEV) domain/ Ubiquitin	
1SYX	UU	U5/ snRNP	
1F80	UU	holo-acyl-carrier-protein synthase/ holo-acyl-carrier-protein	
1WQ1	UU	Ras GAP/ Ras	
1AVZ	UU	HIV-1 NEF/ FYN tyrosine kinase SH3 domain	
1MDA	UU	Methylamine dehydrogenase/ Amicyanin	
1GLA	BU	Glycerol kinase/ GSF III	
1A0O	BU	Che A/ Che Y	
1FIN	UU	CDK2 cyclin-dependant kinase 2/ Cyclin	
1FQ1	υυ	CDK2/ KAP	
3HHR	BU	Human growth hormone/ Receptor	
2PCC	υυ	Cytochrome C Peroxidase/ Iso-1-Cytochrome C	
1EFU	BU	E. coli EFtu/ Efts	

Features Considered Initially for Classification: Details

Feature	Details	Name
Environment	Interface propensity of residues (vs surface)	D_env
Residue pairs	Interface contact propensity of residue pairs	D_pair
Full atom energy	Energy function of RosettaDock protocol	Score
Lennard Jones	Attractive and Repulsive VdW-forces	Fa_atr, Fa_rep
Solvation	Solvation free energy (Lazaridis-Karplus)	Fa_sol
Hydrogen bonds	Orientation-dependent hb	Hb
Side chain	Propensity based on backbone dependent	Fa_Dun
conformations	library (Dunbrack). Free monomer	
	conformation is favored.	
electrostatic	Coulomb energy of interface atoms	D_elec
energy		
Trajectory	Drop in energy during full atom Monte-Carlo	⊿energy
	minimization	
Full atom energy	Energy function of RosettaDesign protocol for	Eres
	interface scoring	
Softened Lennard	Attractive and repulsive terms across interface:	Eatr, Erep
Jones	Softened repulsive	
Solvation	Interface solvation free energy	Esol
Hydrogen bonds	Interface hydrogen bonds	Ehbnd
"pair" energy	Propensity of charged side chain atoms to	Epair
	contact each other - Rosetta approximation of	
	the electrostatic effect	
Interface contacts	Atom-atom contacts across interface within	Ncont
	5Å.	
Protein surface	Solvent Accessible Surface Area (SASA) of	SASA
	protein	
Polar interface	Polar SASA buried upon binding	⊿SASA_POL
Apolar surface	Apolar SASA buried upon binding	⊿SASA_APOL
Packing density	Quality of packing (relative to values from	SASApack
	statistic analysis of packing density in similar	
	environment)	

Feature	Details	Name
Sequence	Degree of sequence conservation of interface	conScore
conservation	residues (based on CONSURF); total score of	
	interface residues	
	Average conservation score of interface residues	avgCon
	Maximal conservation score among interface	maxCon
	residues	
Solvation	SASA-based calculation of solvation	Gsolt
Uniformity	Variance of the energy contributions of	varlfCont
	interactions across the Interface	
Centroidity	Distance from center of mass of interface atoms	Centro
	Distance from center of mass. Averaged over	CentroAv
	interface	g
Secondary	Content of Helix, Strand, Turn, Coil at interface	H,S,T,C
structure	(based on STRIDE)	Cont.
	Average secondary structure content	H,S,T,C
		Avg.
Structural	Total temperature factor of interface residues	totB
definition	Average temperature factor of interface residues	avgB

Hydrogen bonds at	Number of <i>side-chain</i> hydrogen bond donors/ acceptors that are unsatisfied upon binding	⊿SC_H B
interface	Number of <i>main-chain</i> hydrogen bond donors/acceptors that are unsatisfied upon binding	∆BB_H B
Satisfaction of donors/ acceptors	hydrogen bonding - unsatisfied buried hydrogen bond donors and acceptors upon binding	⊿GU_T OT
	"", weighted according to different donor/acceptor types	∆WGU _TOT